Skip to main content
Log in

Almost sure functional central limit theorem for the linear random walk on the torus

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Let \(\rho \) be a probability measure on \(\varGamma :=\mathrm {SL}_d(\mathbb {Z})\). Consider the random walk defined by \(\rho \) on the torus \(\mathbb {T}^d= \mathbb {R}^d/\mathbb {Z}^d\): for any \(x\in \mathbb {T}^d\), the walk starting at x is defined by

$$\begin{aligned} \left\{ \begin{array}{l} X_0 =x \\ X_{n+1} = g_{n+1} X_n \end{array} \right. \end{aligned}$$

where \((g_n)\in \varGamma ^\mathbb {N}\) is chosen with the law \(\rho ^{\otimes \mathbb {N}}\). Bourgain, Furmann, Lindenstrauss and Mozes proved that under an assumption on the group generated by the support of \(\rho \), the random walk starting at any irrational point equidistributes in the torus. In this article, we study the Functional Central Limit Theorem and the almost sure Functional Central Limit Theorem for this walk starting at some points having good diophantine properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is \(\varepsilon \in \mathbb {R}_+^*\) such that

    $$\begin{aligned} \int _{\mathrm {SL}_d(\mathbb {Z})} \Vert g\Vert ^\varepsilon \mathrm{d}\rho (g) \text { is finite}. \end{aligned}$$
  2. The fact that \(\lambda _1\) exists and is non-negative and the uniqueness of \(\overline{\nu }\) come from a theorem of Guivarc’h and Raugi [15].

References

  1. Aaronson, J.: An Introduction to Infinite Ergodic Theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  2. Bekka, B., Mayer, M.: Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, volume 269 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Benoist, Y., Quint, J.-F.: Stationary measures and invariant subsets of homogeneous spaces (III). Ann. Math. (2) 178(3), 1017–1059 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkes, I., Csáki, E.: A universal result in almost sure central limit theory. Stoch. Process. Their Appl. 94(1), 105–134 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A.N., Ibragimov, I.A., Sudakov, V.N.: Limit Theorems for Functionals of Random Walks. Number 195 in Limit Theorems for Functionals of Random Walks. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  6. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. volume 8 of Progress in Probability and Statistics. Birkhäuser Boston Inc., Boston (1985)

    MATH  Google Scholar 

  7. Bourgain, J., Furman, A., Lindenstrauss, E., Mozes, S.: Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus. J. Am. Math. Soc. 24(1), 231–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breiman, L.: The strong law of large numbers for a class of Markov chains. Ann. Math. Stat. 31, 801–803 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaabane, F.: Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323(2), 195–198 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Derriennic, Y., Lin, M.: The central limit theorem for markov chains started at a point. Probab. Theory Relat. Fields 125(1), 73–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furman, A., Shalom, Y.: Sharp ergodic theorems for group actions and strong ergodicity. Ergod. Theory Dyn. Syst. 19(4), 1037–1061 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glynn, P.W., Meyn, S.P.: A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 24(2), 916–931 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gordin, M.I., Lifšic, B.A.: Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR 239(4), 766–767 (1978)

    MathSciNet  Google Scholar 

  14. Guivarc’h, Y.: Limit theorems for random walks and products of random matrices. In: Probability Measures on Groups: Recent Directions and Trends, pp. 255–330. Tata Institute of Fundamental Research, Mumbai (2006). https://mathscinet.ams.org/mathscinet-getitem?mr=2213480

  15. Guivarc’h, Y., Raugi, A.: Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahrsch. Verw. Gebiete 69(2), 187–242 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). (Probability and Mathematical Statistics)

    MATH  Google Scholar 

  17. Krengel, U.: Ergodic Theorems, volume 6 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1985). (With a supplement by Antoine Brunel)

    Google Scholar 

  18. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer, London (1993)

    Book  MATH  Google Scholar 

  19. Villani, C.: Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009). (Old and new)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his careful reading and all his remarks that helped to simplify this paper and make it clearer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Boyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, JB. Almost sure functional central limit theorem for the linear random walk on the torus. Probab. Theory Relat. Fields 173, 651–696 (2019). https://doi.org/10.1007/s00440-018-0871-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0871-8

Keywords

Mathematics Subject Classification

Navigation