Skip to main content

Advertisement

Log in

Little to Give, Much to Gain—What Can You Do With a Dried Blood Spot?

  • Early Life Environmental Health (H Volk and J Buckley, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Technological advances have allowed dried blood spots (DBS) to be utilized for various measurements, helpful in population-based studies. The following is a review of the literature highlighting the advantages and disadvantages of DBS and describing their use in multiple areas of research.

Recent Findings

DBS can track pollutant exposure to understand their impact on health. DBS can also be used for (epi-)genetic studies, to measure clinical biomarkers, and to monitor drug adherence. Advantages of DBS include being minimally invasive, requiring low blood volume, and being cost-effective to collect, transport, and store. Disadvantages of DBS include the hematocrit effect, which is related to the viscosity of the blood affecting its spread on to the filter paper, causing a major source of error when assessing concentrations, and the possibility of low DNA volume.

Summary

Numerous uses for DBS make them an important source of biomaterial but they require additional validation for accuracy and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zakaria R, Allen KJ, Koplin JJ, Roche P, Greaves RF. Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC. 2016;27(4):288–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Scriver CC. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants, by Robert Guthrie and Ada Susi, Pediatrics, 1963;32:318-343. Pediatrics. 1998;102(1 Pt 2):236–7.

    CAS  PubMed  Google Scholar 

  3. Martin RM, Patel R, Oken E, Thompson J, Zinovik A, Kramer MS, et al. Filter paper blood spot enzyme linked immunoassay for adiponectin and application in the evaluation of determinants of child insulin sensitivity. PLoS One. 2013;8(8):e71315. https://doi.org/10.1371/journal.pone.0071315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhattacharya K, Wotton T, Wiley V. The evolution of blood-spot newborn screening. Transl Pediatr. 2014;3(2):63–70. https://doi.org/10.3978/j.issn.2224-4336.2014.03.08.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJ, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171–87. https://doi.org/10.1053/j.semperi.2015.03.002.

    Article  PubMed  Google Scholar 

  6. Therrell BL Jr, Padilla CD. Newborn screening in the developing countries. Curr Opin Pediatr. 2018;30(6):734–9. https://doi.org/10.1097/MOP.0000000000000683.

    Article  PubMed  Google Scholar 

  7. Denes J, Szabo E, Robinette SL, Szatmari I, Szonyi L, Kreuder JG, et al. Metabonomics of newborn screening dried blood spot samples: a novel approach in the screening and diagnostics of inborn errors of metabolism. Anal Chem. 2012;84(22):10113–20. https://doi.org/10.1021/ac302527m.

    Article  CAS  PubMed  Google Scholar 

  8. Kanungo S, Patel DR, Neelakantan M, Ryali B. Newborn screening and changing face of inborn errors of metabolism in the United States. Ann Transl Med. 2018;6(24):468. https://doi.org/10.21037/atm.2018.11.68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murphy SE, Wickham KM, Lindgren BR, Spector LG, Joseph A. Cotinine and trans 3′-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. J Expo Sci Environ Epidemiol. 2013;23(5):513–8. https://doi.org/10.1038/jes.2013.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kato K, Wanigatunga AA, Needham LL, Calafat AM. Analysis of blood spots for polyfluoroalkyl chemicals. Anal Chim Acta. 2009;656(1–2):51–5. https://doi.org/10.1016/j.aca.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  11. Batterman S, Chernyak S. Performance and storage integrity of dried blood spots for PCB, BFR and pesticide measurements. Sci Total Environ. 2014:494–5:252–60. https://doi.org/10.1016/j.scitotenv.2014.06.142.

  12. Funk WE, McGee JK, Olshan AF, Ghio AJ. Quantification of arsenic, lead, mercury and cadmium in newborn dried blood spots. Biomarkers. 2013;18(2):174–7. https://doi.org/10.3109/1354750X.2012.750379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pedersen L, Andersen-Ranberg K, Hollergaard M, Nybo M. Quantification of multiple elements in dried blood spot samples. Clin Biochem. 2017;50(12):703–9. https://doi.org/10.1016/j.clinbiochem.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  14. Hollegaard MV, Grove J, Thorsen P, Norgaard-Pedersen B, Hougaard DM. High-throughput genotyping on archived dried blood spot samples. Genet Test Mol Biomarkers. 2009;13(2):173–9. https://doi.org/10.1089/gtmb.2008.0073.

    Article  CAS  PubMed  Google Scholar 

  15. Joo JE, Wong EM, Baglietto L, Jung CH, Tsimiklis H, Park DJ, et al. The use of DNA from archival dried blood spots with the Infinium HumanMethylation450 array. BMC Biotechnol. 2013;13:23. https://doi.org/10.1186/1472-6750-13-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Drolet J, Tolstikov V, Williams BA, Greenwood BP, Hill C, Vishnudas VK, et al. Integrated metabolomics assessment of human dried blood spots and urine strips. Metabolites. 2017;7(3). https://doi.org/10.3390/metabo7030035.

  17. Vazquez-Moron S, Ryan P, Ardizone-Jimenez B, Martin D, Troya J, Cuevas G, et al. Evaluation of dried blood spot samples for screening of hepatitis C and human immunodeficiency virus in a real-world setting. Sci Rep. 2018;8(1):1858. https://doi.org/10.1038/s41598-018-20312-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Skogstrand K, Thorsen P, Norgaard-Pedersen B, Schendel DE, Sorensen LC, Hougaard DM. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. Clin Chem. 2005;51(10):1854–66. https://doi.org/10.1373/clinchem.2005.052241.

    Article  CAS  PubMed  Google Scholar 

  19. Bernieh D, Lawson G, Tanna S. Quantitative LC-HRMS determination of selected cardiovascular drugs, in dried blood spots, as an indicator of adherence to medication. J Pharm Biomed Anal. 2017;142:232–43. https://doi.org/10.1016/j.jpba.2017.04.045.

    Article  CAS  PubMed  Google Scholar 

  20. Ostler MW, Porter JH, Buxton OM. Dried blood spot collection of health biomarkers to maximize participation in population studies. J Vis Exp. 2014;83:e50973. https://doi.org/10.3791/50973.

    Article  CAS  Google Scholar 

  21. Martin NJ, Cooper HJ. Challenges and opportunities in mass spectrometric analysis of proteins from dried blood spots. Expert Rev Proteomics. 2014;11(6):685–95. https://doi.org/10.1586/14789450.2014.965158.

    Article  CAS  PubMed  Google Scholar 

  22. Rajatileka S, Luyt K, El-Bokle M, Williams M, Kemp H, Molnar E, et al. Isolation of human genomic DNA for genetic analysis from premature neonates: a comparison between newborn dried blood spots, whole blood and umbilical cord tissue. BMC Genet. 2013;14:105. https://doi.org/10.1186/1471-2156-14-105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Massaro AN, Wu YW, Bammler TK, MacDonald JW, Mathur A, Chang T, et al. Dried blood spot compared to plasma measurements of blood-based biomarkers of brain injury in neonatal encephalopathy. Pediatr Res. 2019;85(5):655–61. https://doi.org/10.1038/s41390-019-0298-7.

    Article  PubMed  Google Scholar 

  24. Jensen BP, Saraf R, Ma J, Berry S, Grant CC, Camargo CA Jr, et al. Quantitation of 25-hydroxyvitamin D in dried blood spots by 2D LC-MS/MS without derivatization and correlation with serum in adult and pediatric studies. Clin Chim Acta. 2018;481:61–8. https://doi.org/10.1016/j.cca.2018.02.024.

    Article  CAS  PubMed  Google Scholar 

  25. Lu D, Wang D, Ip HS, Barley F, Ramage R, She J. Measurements of polybrominated diphenyl ethers and polychlorinated biphenyls in a single drop of blood. J Chromatogr B Analyt Technol Biomed Life Sci. 2012:891–2:36–43. https://doi.org/10.1016/j.jchromb.2012.02.016.

  26. Daousani C, Karalis V, Malenovic A, Dotsikas Y. Hematocrit effect on dried blood spots in adults: a computational study and theoretical considerations. Scand J Clin Lab Invest. 2019;79(5):325–33. https://doi.org/10.1080/00365513.2019.1622033.

    Article  PubMed  Google Scholar 

  27. Fan L, Lee JA. Managing the effect of hematocrit on DBS analysis in a regulated environment. Bioanalysis. 2012;4(4):345–7. https://doi.org/10.4155/bio.11.337.

    Article  CAS  PubMed  Google Scholar 

  28. Ho NT, Furge K, Fu W, Busik J, Khoo SK, Lu Q, et al. Gene expression in archived newborn blood spots distinguishes infants who will later develop cerebral palsy from matched controls. Pediatr Res. 2013;73(4 Pt 1):450–6. https://doi.org/10.1038/pr.2012.200.

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhuri SN, Butala SJ, Ball RW, Braniff CT, Rocky Mountain Biomonitoring C. Pilot study for utilization of dried blood spots for screening of lead, mercury and cadmium in newborns. J Expo Sci Environ Epidemiol. 2009;19(3):298–316. https://doi.org/10.1038/jesee.2008.19.

    Article  CAS  PubMed  Google Scholar 

  30. Spector LG, Hecht SS, Ognjanovic S, Carmella SG, Ross JA. Detection of cotinine in newborn dried blood spots. Cancer Epidemiol Biomark Prev. 2007;16(9):1902–5. https://doi.org/10.1158/1055-9965.EPI-07-0230.

    Article  CAS  Google Scholar 

  31. Kolatorova L, Duskova M, Vitku J, Starka L. Prenatal exposure to bisphenols and parabens and impacts on human physiology. Physiol Res. 2017;66(Supplementum 3):S305–S15.

    Article  CAS  Google Scholar 

  32. Spector LG, Murphy SE, Wickham KM, Lindgren B, Joseph AM. Prenatal tobacco exposure and cotinine in newborn dried blood spots. Pediatrics. 2014;133(6):e1632–8. https://doi.org/10.1542/peds.2013-3118.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sosnoff CS, Bernert JT. Analysis of cotinine in dried blood spots by LC APCI tandem mass spectrometry. Clin Chim Acta. 2008;388(1–2):228–9. https://doi.org/10.1016/j.cca.2007.10.031.

    Article  CAS  PubMed  Google Scholar 

  34. Ladror D, Pitt B, Funk W. Quantification of cotinine in dried blood spots as a biomarker of exposure to tobacco smoke. Biomarkers. 2018;23(1):44–50. https://doi.org/10.1080/1354750X.2017.1375558.

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Pearl M, Jacob P 3rd, DeLorenze GN, Benowitz NL, Yu L, et al. Levels of cotinine in dried blood specimens from newborns as a biomarker of maternal smoking close to the time of delivery. Am J Epidemiol. 2013;178(11):1648–54. https://doi.org/10.1093/aje/kwt182.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Poothong S, Papadopoulou E, Lundanes E, Padilla-Sanchez JA, Thomsen C, Haug LS. Dried blood spots for reliable biomonitoring of poly- and perfluoroalkyl substances (PFASs). Sci Total Environ. 2019;655:1420–6. https://doi.org/10.1016/j.scitotenv.2018.11.214.

    Article  CAS  PubMed  Google Scholar 

  37. Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K, et al. Use of newborn screening program blood spots for exposure assessment: declining levels of perluorinated compounds in New York State infants. Environ Sci Technol. 2008;42(14):5361–7. https://doi.org/10.1021/es8006244.

    Article  CAS  PubMed  Google Scholar 

  38. Yeung EH, Louis GB, Lawrence D, Kannan K, McLain AC, Caggana M, et al. Eliciting parental support for the use of newborn blood spots for pediatric research. BMC Med Res Methodol. 2016;16:14. https://doi.org/10.1186/s12874-016-0120-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghassabian A, Bell EM, Ma WL, Sundaram R, Kannan K, Buck Louis GM, et al. Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behavior. Environ Pollut. 2018;243(Pt B):1629–36. https://doi.org/10.1016/j.envpol.2018.09.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bell GA, Perkins N, Buck Louis GM, Kannan K, Bell EM, Gao C, et al. Exposure to persistent organic pollutants and birth characteristics: the upstate KIDS study. Epidemiology. 2019;30(Suppl 2):S94–S100. https://doi.org/10.1097/EDE.0000000000001095.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ma WL, Yun S, Bell EM, Druschel CM, Caggana M, Aldous KM, et al. Temporal trends of polybrominated diphenyl ethers (PBDEs) in the blood of newborns from New York State during 1997 through 2011: analysis of dried blood spots from the newborn screening program. Environ Sci Technol. 2013;47(14):8015–21. https://doi.org/10.1021/es401857v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burse VW, DeGuzman MR, Korver MP, Najam AR, Williams CC, Hannon WH, et al. Preliminary investigation of the use of dried-blood spots for the assessment of in utero exposure to environmental pollutants. Biochem Mol Med. 1997;61(2):236–9. https://doi.org/10.1006/bmme.1997.2603.

    Article  CAS  PubMed  Google Scholar 

  43. Basu N, Eng JWL, Perkins M, Santa-Rios A, Martincevic G, Carlson K, et al. Development and application of a novel method to characterize methylmercury exposure in newborns using dried blood spots. Environ Res. 2017;159:276–82. https://doi.org/10.1016/j.envres.2017.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lefterova MI, Shen P, Odegaard JI, Fung E, Chiang T, Peng G, et al. Next-generation molecular testing of newborn dried blood spots for cystic fibrosis. J Mol Diagn. 2016;18(2):267–82. https://doi.org/10.1016/j.jmoldx.2015.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. • Tian X, Zhou J, Zhao Y, Cheng Z, Song W, Sun Y, et al. High-throughput, multiplex genotyping directly from blood or dried blood spot without DNA extraction for the screening of multiple G6PD gene variants at risk for drug-induced hemolysis. J Mol Diagn. 2017;19(5):638–50. https://doi.org/10.1016/j.jmoldx.2017.05.007. This study utilized a novel method to understand G6PD gene variants and how they are affected by certain malaria therapeutic drugs.

    Article  CAS  PubMed  Google Scholar 

  46. • Xiong Y, Jeronis S, Hoffman B, Liebermann DA, Geifman-Holtzman O. First trimester noninvasive fetal RHD genotyping using maternal dried blood spots. Prenat Diagn. 2017;37(4):311–7. https://doi.org/10.1002/pd.5006. This study highlights a novel use of DBS for RHD genotyping which can help prevent complications when maternal and fetal RHD are not identical.

  47. Sok P, Lupo PJ, Richard MA, Rabin KR, Ehli EA, Kallsen NA, et al. Utilization of archived neonatal dried blood spots for genome-wide genotyping. PLoS One. 2020;15(2):e0229352. https://doi.org/10.1371/journal.pone.0229352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carter TC, Sicko RJ, Kay DM, Browne ML, Romitti PA, Edmunds ZL, et al. Copy-number variants and candidate gene mutations in isolated split hand/foot malformation. J Hum Genet. 2017;62(10):877–84. https://doi.org/10.1038/jhg.2017.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giannakou A, Sicko RJ, Kay DM, Zhang W, Romitti PA, Caggana M, et al. Copy number variants in hypoplastic right heart syndrome. Am J Med Genet A. 2018;176(12):2760–7. https://doi.org/10.1002/ajmg.a.40527.

    Article  CAS  PubMed  Google Scholar 

  50. Giannakou A, Sicko RJ, Zhang W, Romitti P, Browne ML, Caggana M, et al. Copy number variants in Ebstein anomaly. PLoS One. 2017;12(12):e0188168. https://doi.org/10.1371/journal.pone.0188168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haak PT, Busik JV, Kort EJ, Tikhonenko M, Paneth N, Resau JH. Archived unfrozen neonatal blood spots are amenable to quantitative gene expression analysis. Neonatology. 2009;95(3):210–6. https://doi.org/10.1159/000155652.

    Article  CAS  PubMed  Google Scholar 

  52. Shearer AE, Frees K, Kolbe DL, Smith RJH. Comprehensive genetic testing for deafness from fresh and archived dried blood spots. Otolaryngol Head Neck Surg. 2018;194599818797291:1058–60. https://doi.org/10.1177/0194599818797291.

    Article  Google Scholar 

  53. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. https://doi.org/10.1038/npp.2012.112.

    Article  CAS  PubMed  Google Scholar 

  54. Leti F, Llaci L, Malenica I, DiStefano JK. Methods for CpG methylation array profiling via bisulfite conversion. Methods Mol Biol. 1706;2018:233–54. https://doi.org/10.1007/978-1-4939-7471-9_13.

    Article  CAS  Google Scholar 

  55. Walker RM, MacGillivray L, McCafferty S, Wrobel N, Murphy L, Kerr SM, et al. Assessment of dried blood spots for DNA methylation profiling. Wellcome Open Res. 2019;4:44. https://doi.org/10.12688/wellcomeopenres.15136.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Novakovic B, Lewis S, Halliday J, Kennedy J, Burgner DP, Czajko A, et al. Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat Commun. 2019;10(1):3922. https://doi.org/10.1038/s41467-019-11929-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li S, Wong EM, Bui M, Nguyen TL, Joo JE, Stone J, et al. Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study. Clin Epigenetics. 2018;10:18. https://doi.org/10.1186/s13148-018-0452-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gonseth S, Roy R, Houseman EA, de Smith AJ, Zhou M, Lee ST, et al. Periconceptional folate consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes. Epigenetics. 2015;10(12):1166–76. https://doi.org/10.1080/15592294.2015.1117889.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Diener C, Galata V, Keller A, Meese E. MicroRNA profiling from dried blood samples. Crit Rev Clin Lab Sci. 2019;56(2):111–7. https://doi.org/10.1080/10408363.2018.1561641.

    Article  CAS  PubMed  Google Scholar 

  60. Otero-Santos SM, Delinsky AD, Valentin-Blasini L, Schiffer J, Blount BC. Analysis of perchlorate in dried blood spots using ion chromatography and tandem mass spectrometry. Anal Chem. 2009;81(5):1931–6. https://doi.org/10.1021/ac802419n.

    Article  CAS  PubMed  Google Scholar 

  61. Palmer EA, Cooper HJ, Dunn WB. Investigation of the 12-month stability of dried blood and urine spots applying untargeted UHPLC-MS metabolomic assays. Anal Chem. 2019;91(22):14306–13. https://doi.org/10.1021/acs.analchem.9b02577.

    Article  CAS  PubMed  Google Scholar 

  62. Trifonova OP, Maslov DL, Balashova EE, Lokhov PG. Evaluation of dried blood spot sampling for clinical metabolomics: effects of different papers and sample storage stability. Metabolites. 2019;9(11). https://doi.org/10.3390/metabo9110277.

  63. Han J, Higgins R, Lim MD, Lin K, Yang J, Borchers CH. Short-term stabilities of 21 amino acids in dried blood spots. Clin Chem. 2018;64(2):400–2. https://doi.org/10.1373/clinchem.2017.278457.

    Article  CAS  PubMed  Google Scholar 

  64. Dietzen DJ, Bennett MJ, Lo SF, Grey VL, Jones PM. Dried blood spot reference intervals for steroids and amino acids in a neonatal cohort of the national children’s study. Clin Chem. 2016;62(12):1658–67. https://doi.org/10.1373/clinchem.2016.263434.

    Article  CAS  PubMed  Google Scholar 

  65. McDonald TJ, Besser RE, Perry M, Babiker T, Knight BA, Shepherd MH, et al. Screening for neonatal diabetes at day 5 of life using dried blood spot glucose measurement. Diabetologia. 2017;60(11):2168–73. https://doi.org/10.1007/s00125-017-4383-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Crignis E, Re MC, Cimatti L, Zecchi L, Gibellini D. HIV-1 and HCV detection in dried blood spots by SYBR Green multiplex real-time RT-PCR. J Virol Methods. 2010;165(1):51–6. https://doi.org/10.1016/j.jviromet.2009.12.017.

    Article  CAS  PubMed  Google Scholar 

  67. Ibarra-Meneses AV, Mondal D, Alvar J, Moreno J, Carrillo E. Cytokines and chemokines measured in dried SLA-stimulated whole blood spots for asymptomatic Leishmania infantum and Leishmania donovani infection. Sci Rep. 2017;7(1):17266. https://doi.org/10.1038/s41598-017-17315-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fernandes ND, Badri T. Congenital herpes simplex. Treasure Island (FL): StatPearls; 2019.

    Google Scholar 

  69. Lewensohn-Fuchs I, Osterwall P, Forsgren M, Malm G. Detection of herpes simplex virus DNA in dried blood spots making a retrospective diagnosis possible. J Clin Virol. 2003;26(1):39–48.

    Article  Google Scholar 

  70. Miller EM, McDade TW. A highly sensitive immunoassay for interleukin-6 in dried blood spots. Am J Hum Biol. 2012;24(6):863–5. https://doi.org/10.1002/ajhb.22324.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ghassabian A, Sundaram R, Chahal N, McLain AC, Bell EM, Lawrence DA, et al. Concentrations of immune marker in newborn dried blood spots and early childhood development: results from the Upstate KIDS Study. Paediatr Perinat Epidemiol. 2018;32(4):337–45. https://doi.org/10.1111/ppe.12485.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ghassabian A, Albert PS, Hornig M, Yeung E, Cherkerzian S, Goldstein RB, et al. Gestational cytokine concentrations and neurocognitive development at 7 years. Transl Psychiatry. 2018;8(1):64. https://doi.org/10.1038/s41398-018-0112-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thomas A, Thevis M. Analysis of insulin and insulin analogs from dried blood spots by means of liquid chromatography-high resolution mass spectrometry. Drug Test Anal. 2018;10(11–12):1761–8. https://doi.org/10.1002/dta.2518.

    Article  CAS  PubMed  Google Scholar 

  74. Eising S, Svensson J, Skogstrand K, Nilsson A, Lynch K, Andersen PS, et al. Type 1 diabetes risk analysis on dried blood spot samples from population-based newborns: design and feasibility of an unselected case-control study. Paediatr Perinat Epidemiol. 2007;21(6):507–17. https://doi.org/10.1111/j.1365-3016.2007.00846.x.

    Article  PubMed  Google Scholar 

  75. Eising S, Nilsson A, Carstensen B, Hougaard DM, Norgaard-Pedersen B, Nerup J, et al. Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes. Eur J Endocrinol. 2011;164(2):247–52. https://doi.org/10.1530/EJE-10-0792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adachi M, Soneda A, Asakura Y, Muroya K, Yamagami Y, Hirahara F. Mass screening of newborns for congenital hypothyroidism of central origin by free thyroxine measurement of blood samples on filter paper. Eur J Endocrinol. 2012;166(5):829–38. https://doi.org/10.1530/EJE-11-0653.

    Article  CAS  PubMed  Google Scholar 

  77. •• Linder C, Wide K, Walander M, Beck O, Gustafsson LL, Pohanka A. Comparison between dried blood spot and plasma sampling for therapeutic drug monitoring of antiepileptic drugs in children with epilepsy: a step towards home sampling. Clin Biochem. 2017;50(7–8):418–24. https://doi.org/10.1016/j.clinbiochem.2016.12.008. This study highlighted the benefits of DBS for home sampling, therapeutic drug monitoring in children, and how it could relieve cost burdens.

    Article  CAS  PubMed  Google Scholar 

  78. Kneepkens EL, Pouw MF, Wolbink GJ, Schaap T, Nurmohamed MT, de Vries A, et al. Dried blood spots from finger prick facilitate therapeutic drug monitoring of adalimumab and anti-adalimumab in patients with inflammatory diseases. Br J Clin Pharmacol. 2017;83(11):2474–84. https://doi.org/10.1111/bcp.13371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nijenhuis CM, Huitema AD, Marchetti S, Blank C, Haanen JB, van Thienen JV, et al. The use of dried blood spots for pharmacokinetic monitoring of vemurafenib treatment in melanoma patients. J Clin Pharmacol. 2016;56(10):1307–12. https://doi.org/10.1002/jcph.728.

    Article  CAS  PubMed  Google Scholar 

  80. Siebenhaar M, Kullmer K, Fernandes NM, Hullen V, Hopf C. Personalized monitoring of therapeutic salicylic acid in dried blood spots using a three-layer setup and desorption electrospray ionization mass spectrometry. Anal Bioanal Chem. 2015;407(23):7229–38. https://doi.org/10.1007/s00216-015-8887-8.

    Article  CAS  PubMed  Google Scholar 

  81. Grant RM, Anderson PL, McMahan V, Liu A, Amico KR, Mehrotra M, et al. Uptake of pre-exposure prophylaxis, sexual practices, and HIV incidence in men and transgender women who have sex with men: a cohort study. Lancet Infect Dis. 2014;14(9):820–9. https://doi.org/10.1016/S1473-3099(14)70847-3.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kumar VS, Webster M. Measuring adherence to HIV pre-exposure prophylaxis through dried blood spots. Clin Chem. 2016;62(7):1041–3. https://doi.org/10.1373/clinchem.2015.253179.

    Article  CAS  PubMed  Google Scholar 

  83. Scherf-Clavel M, Hogger P. Analysis of metformin, sitagliptin and creatinine in human dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;997:218–28. https://doi.org/10.1016/j.jchromb.2015.06.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwina Yeung.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Early Life Environmental Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClendon-Weary, B., Putnick, D.L., Robinson, S. et al. Little to Give, Much to Gain—What Can You Do With a Dried Blood Spot?. Curr Envir Health Rpt 7, 211–221 (2020). https://doi.org/10.1007/s40572-020-00289-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-020-00289-y

Keywords

Navigation