Skip to main content
Log in

Movement of C100 fullerene in a closed carbon nanocontainer

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The paper proposes a method for high-precision calculations of the fullerene dynamics in a cylindrical carbon nanocontainer. The method has no restrictions on nutation angles since it does not involve calculating Euler angles. In this case, the position of the body in space is determined by the coordinates of its three points do not lie on one straight line. The results of numerical calculations are compared with the exact analytical solution on the rotation of the molecular structure by inertia around its center of mass. The accuracy of calculations is controlled by maintaining the balance of total mechanical energy in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lotfabadi SV, Mortazavi SA, Yeganehzad S (2020) Study on the release and sensory perception of encapsulated d-limonene flavor in crystal rock candy using the time–intensity analysis and HS-GC/MS spectrometry. Food Sci Nutr 8(2):933–941. https://doi.org/10.1002/fsn3.1372

    Article  Google Scholar 

  2. Rezaei A, Fathi M, Jafari SM (2019) Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll 88:146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003

    Article  Google Scholar 

  3. Bansode SS, Banarjee SK, Gaikwad DD, Jadhav SL, Thorat RM (2010) Microencapsulation: a review. Int J Phamaceutical Sci Rev Res 1(2):38–43

    Google Scholar 

  4. Amiri S, Amiri S (2020) Inhibitors-loaded nanocontainers for self-healing coatings. Corros Protect Nanoscale. https://doi.org/10.1016/B978-0-12-819359-4.00020-9

    Article  Google Scholar 

  5. Abdullayev E, Lvov YM (2011) Halloysite clay nanotubes for controlled release of protective agents. J Nanosci Nanotechnol 11(11):10007–10026. https://doi.org/10.1166/jnn.2011.5724

    Article  Google Scholar 

  6. Li H, Ma Y, Li Z, Ji J, Zhu Y, Wang H (2017) High temperature resistant polysulfone/silica double-wall microcapsules and their application in self-lubricating polypropylene. RSC Adv 7(79):50328–50335. https://doi.org/10.1039/C7RA06851D

    Article  Google Scholar 

  7. Ganji MD (2016) Computational design of multi-states monomolecular device using molecular hydrogen and C20 isomers. Phys Solid State 58:1476–1482. https://doi.org/10.1134/S106378341607012X

    Article  Google Scholar 

  8. Ye X, Gu X, Gong XG, Shing TKM, Liu ZF (2007) A nanocontainer for the storage of hydrogen. Carbon 45(2):315–320. https://doi.org/10.1016/j.carbon.2006.09.026

    Article  Google Scholar 

  9. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65:1964–2015. https://doi.org/10.1016/j.addr.2013.08.005

    Article  Google Scholar 

  10. Huang H, Yuan Q, Shah JS, Misra RDK (2011) A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 63:1332–1339. https://doi.org/10.1016/j.addr.2011.04.001

    Article  Google Scholar 

  11. Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S (2013) Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem 20:1333–1354. https://doi.org/10.2174/0929867311320110001

    Article  Google Scholar 

  12. Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A (2016) Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 501:278–299. https://doi.org/10.1016/j.ijpharm.2016.01.064

    Article  Google Scholar 

  13. Battigelli A, M´enard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65:1899–1920. https://doi.org/10.1016/j.addr.2013.07.006

    Article  Google Scholar 

  14. Jagusiak A, Goclon J, Panczyk T (2021) Adsorption of Evans blue and Congo red on carbon nanotubes and its influence on the fracture parameters of defective and functionalized carbon nanotubes studied using computational methods. Appl Surf Sci 539:148236. https://doi.org/10.1016/j.apsusc.2020.148236

    Article  Google Scholar 

  15. Goclon J, Panczyk T, Winkler K (2018) Investigation of the interfacial properties of polyurethane/carbon nanotube hybrid composites: a molecular dynamics study. Appl Surf Sci 433:213–221. https://doi.org/10.1016/j.apsusc.2017.09.192

    Article  Google Scholar 

  16. Li Z, de Barros ALB, Soares DCF, Moss SN, Alisaraie L (2017) Functionalized singlewalled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm 524:41–54. https://doi.org/10.1016/j.ijpharm.2017.03.017

    Article  Google Scholar 

  17. Mehra NK, Palakurthi S (2016) Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today 21:585–597. https://doi.org/10.1016/j.drudis.2015.11.011

    Article  Google Scholar 

  18. Lay CL, Liu J, Liu Y (2011) Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev Med Devices 8:561–566. https://doi.org/10.1586/erd.11.34

    Article  Google Scholar 

  19. Luanpitpong S, Wang L, Castranova V, Dinu CZ, Issaragrisil S, Chen YC, Rojanasakul Y (2016) Induction of cancer-associated fibroblast-like cells by carbon nanotubes dictates its tumorigenicity. Sci Rep. https://doi.org/10.1038/srep39558

    Article  Google Scholar 

  20. Leyva-Gonzalez CA, Salas-Trevino D, Contreras-Torres FF, de Loera-Arias J, Gomez-Tristan M, Pina-Mendoza CA, de García-Rivas EI, Guillen-Melendez G, Montes-de-Oca-Luna GA, Saucedo-Cardenas R, Soto-Dominguez O A (2021) Hyaluronate functionalized multi-wall carbon nanotubes loaded with carboplatin enhance cytotoxicity on human cancer cell lines. Materials 14:3622. https://doi.org/10.3390/ma14133622

    Article  Google Scholar 

  21. Pastorin G (2009) Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res 26:746–769. https://doi.org/10.1007/s11095-008-9811-0

    Article  Google Scholar 

  22. Niu L, Meng L, Lu Q (2013) Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol Biosci 13(6):735–744. https://doi.org/10.1002/mabi.201200475

    Article  Google Scholar 

  23. Ali Mohammadi Z, Aghamiri SF, Zarrabi A, Talaie MR (2015) A comparative study on non-covalent functionalization of carbon nanotubes by chitosan and its derivatives for delivery of doxorubicin. Chem Phys Lett 642:22–28. https://doi.org/10.1016/j.cplett.2015.10.075

    Article  Google Scholar 

  24. Ismaili H, Lagugne-Labarthet F, Workentin MS (2011) Covalently assembled gold nanoparticle-carbon nanotube hybrids via a photoinitiated carbene addition reaction. Chem Mater 23:1519–1525. https://doi.org/10.1021/cm103284g

    Article  Google Scholar 

  25. Farajian AA, Mikami M (2001) Electronic and mechanical properties of C60-doped nanotubes. J Phys Condens Matter 13:8049–8059. https://doi.org/10.1088/0953-8984/13/35/312

    Article  Google Scholar 

  26. Troche KS, Coluci VR, Rurali R, Galvao DS (2007) Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes. J Phys Condens Matter 19:236222. https://doi.org/10.1088/0953-8984/19/23/236222

    Article  Google Scholar 

  27. Prudkovskiy V, Berd M, Pavlenko E, Katin K, Maslov M, Puech P, Monthioux M, Escoffier W, Goiran M, Raquet B (2013) Electronic coupling in fullerene-doped semiconducting carbon nanotubes probed by Raman spectroscopy and electronic transport. Carbon 57:498–506. https://doi.org/10.1016/j.carbon.2013.02.027

    Article  Google Scholar 

  28. Cox BJ, Thamwattana N, Hill JM (2007) Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proc R Soc A 463:461–476. https://doi.org/10.1098/rspa.2007.0247

    Article  MATH  Google Scholar 

  29. Joung SK, Okazaki T, Okada S, Iijima S (2012) Weak response of metallic single-walled carbon nanotubes to C60 encapsulation studied by resonance raman spectroscopy. J Phys Chem C 116:23844–23850. https://doi.org/10.1021/jp309379r

    Article  Google Scholar 

  30. Ghavanloo E, Fazelzadeh SA, Rafii-Tabar H (2017) A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. J Mol Model 23:48. https://doi.org/10.1007/s00894-017-3220-4

    Article  Google Scholar 

  31. Ganji MD, Mousavy M, Rezvani M (2011) On the encapsulation of azafullerenes inside the single-walled carbon nanotubes: density-functional theory based treatments. Phys B: Condens Matter 406(8):1561–1566. https://doi.org/10.1016/j.physb.2011.01.070

    Article  Google Scholar 

  32. Ganji MD, Ghorbanzadeh M, Negaresh M, Najafi AA, Rezvani M, Shokry M (2011) First-principles investigations on the feasibility of the boron nitride fullerene-like B36N36 for natural gas storage. J Comput Theor Nanosci 8(5):862–866. https://doi.org/10.1166/jctn.2011.1765

    Article  Google Scholar 

  33. Ganji MD, Nashtahosseini M, Yeganegi S, Rezvani M (2013) First-principles vdW-DF investigation on the interaction between the oxazepam molecule and C60 fullerene. J Mol Model 19(4):1929–1936. https://doi.org/10.1007/s00894-013-1758-3

    Article  Google Scholar 

  34. Rezvani M, Ganji MD, Faghihnasiri M (2013) Encapsulation of lamivudine into single walled carbon nanotubes: a vdW-DF study. Phys E: Low Dimens Syst Nanostruct 52:27–33. https://doi.org/10.1016/j.physe.2013.03.024

    Article  Google Scholar 

  35. Rasoolidanesh M, Astaraki M, Mostafavi M, Rezvani M, Ganji MD (2021) Toward efficient enantioseparation of ibuprofen isomers using chiral BNNTs: dispersion corrected DFT calculations and DFTB molecular dynamic simulations. Diam Relat Mater 119:108561. https://doi.org/10.1016/j.diamond.2021.108561

    Article  Google Scholar 

  36. Ganji MD, Rezvani M, Shokry M, Mirnejad A (2011) First-principles investigation on the formation of endohedral complexes between CH4 molecules and Si60 fullerene nanocage. Fuller Nanotub Carbon Nanostructures 19(5):421–428. https://doi.org/10.1080/1536383x.2010.481059

    Article  Google Scholar 

  37. Bubenchikov AM, Bubenchikov MA, Mamontov DV, Chelnokova AS, Chumakova SP (2021) Movement of fullerenes and their dimers inside carbon nanotubes. Fuller Nanotub Carbon Nanostructures 29(10):803–809. https://doi.org/10.1080/1536383X.2021.1900122

    Article  Google Scholar 

  38. Lun-fu AV, Bubenchikov AM, Bubenchikov MA, Ovchinnikov VA (2021) Numerical simulation of interaction between kr + ion and rotating C60 fullerene towards for nanoarchitectonics of fullerene materials. Crystals 11(10):1204. https://doi.org/10.3390/cryst11101204

    Article  Google Scholar 

  39. Bubenchikov MA, Bubenchikov AM, Mamontov DV (2021) Rotations and vibrations of fullerenes in the molecular complex C20@C80. Vestnik Tomsk Gos Univ Mat i Mekhanika 71:35–48. https://doi.org/10.17223/19988621/71/4

    Article  Google Scholar 

  40. Bubenchikov MA, Bubenchikov AM, Lun-Fu AV, Ovchinnikov VA (2021) Rotational Dynamics of Fullerenes in the Molecular Crystal of Fullerite. Phys Status Solidi A 218(5):2000174. https://doi.org/10.1002/pssa.202000174

    Article  Google Scholar 

  41. Lun-fu AV, Bubenchikov AM, Bubenchikov MA, Ovchinnikov VA (2022) Computational analysis of strain‐induced effects on the dynamic properties of C60 in fullerite. Crystals 12(2):260. https://doi.org/10.3390/cryst12020260

    Article  Google Scholar 

  42. Bubenchikov M, Bubenchikov A, Mamontov D, Ovchinnikov V (2022) Studying the possibility of using fullerenes inside carbon nanotubes as a molecular engine. J Phys: Conf Ser 2211(1):012005. https://doi.org/10.1088/1742-6596/2211/1/012005

    Article  Google Scholar 

  43. Lun-Fu A, Borodin V, Bubenchikov M, Bubenchikov A, Mamontov D (2022) Fullerene in a magnetic field. Crystals 12(4):521. https://doi.org/10.3390/cryst12040521

    Article  MATH  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Higher Education of Russia, Grant Agreement No 075-02-2022-884.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology and project administration: A.M.B.; software, validation and investigation: D.V.M.; resources and data curation: V.I.B; formal analysis, writing‒original draft preparation, writing‒review and editing: A.S.Ch. and A.M.B.; visualization: A.S.Ch.; supervision and funding acquisition: M.A.B. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anna S. Chelnokova.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, V.I., Bubenchikov, A.M., Bubenchikov, M.A. et al. Movement of C100 fullerene in a closed carbon nanocontainer. Comp. Part. Mech. 10, 1161–1170 (2023). https://doi.org/10.1007/s40571-023-00552-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00552-7

Keywords

Navigation