Skip to main content
Log in

A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Raman radial breathing-like mode (RBLM) frequencies of an infinite nanopeapods are calculated within the framework of a continuum-molecular based model. The nanotube-fullerene interaction is modeled via the Lennard-Jones interatomic potential. An analytical formulation is developed and is justified due to its good agreement with the experimental and atomistic-based results. Furthermore, we propose new relationships for the van der Waals (vdW) interaction coefficients between the atoms of this hybrid nanostructure. Numerical results are also obtained for various nanopeapods on the basis of the present formulation. The RBLM frequency upshifts are predicted for small single-walled carbon nanotubes (SWCNTs). The frequency shifts can be adequately explained by the vdW intermolecular interactions acting between the fullerene and the SWCNTs atoms. To the best of our knowledge, a simple theoretical method which can predict the Raman RBLM frequencies of the nanopeapods with high precision has not been provided hitherto. We believe that the present study is likely to fill the gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Krätschmer W (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth Met 121:1195–1196

    Article  CAS  Google Scholar 

  2. Okada S, Saito S, Oshiyama A (2001) Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys Rev Lett 86:3835–3838

    Article  CAS  Google Scholar 

  3. Monthioux M (2002) Filling single-wall carbon nanotubes. Carbon 40(10):1809–1823

    Article  CAS  Google Scholar 

  4. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y, Iwasa Y (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2(10):683–688

    Article  CAS  Google Scholar 

  5. Kuzmany H, Plank W, Schaman C, Pfeiffer R, Hasi F, Simon F, Rotas G, Pagona G, Tagmatarchis N (2007) Raman scattering from nanomaterials encapsulated into single wall carbon nanotubes. J Raman Spectrosc 38:704–713

    Article  CAS  Google Scholar 

  6. Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324

    Article  CAS  Google Scholar 

  7. Smith BW, Monthioux M, Luzzi DE (1999) Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem Phys Lett 315:31–36

    Article  CAS  Google Scholar 

  8. Noya EG, Srivastava D, Chernozatonskii LA, Menon M (2004) Thermal conductivity of carbon nanotube peapods. Phys Rev B 70:115416

    Article  Google Scholar 

  9. Sohi AN, Naghdabadi R (2007) Stability of C60-peapods under hydrostatic pressure. Acta Mater 55:5483–5488

    Article  CAS  Google Scholar 

  10. Cox BJ, Thamwattana N, Hill JM (2007) Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proc R Soc A 463:461–476

    Article  CAS  Google Scholar 

  11. Gorantla S, Avdoshenko S, Börrnert F, Bachmatiuk A, Dimitrakopoulou M, Schäffel F, Schönfelder R, Thomas J, Gemming T, Warner JH, Cuniberti G, Eckert J, Büchner B, Rümmeli MH (2010) Enhanced π–π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. Nano Res 3:92–97

    Article  CAS  Google Scholar 

  12. Joung SK, Okazaki T, Okada S, Iijima S (2012) Weak response of metallic single-walled carbon nanotubes to C60 encapsulation studied by resonance Raman spectroscopy. J Phys Chem C 116:23844–23850

    Article  CAS  Google Scholar 

  13. Ghavanloo E, Fazelzadeh SA, Rafii-Tabar H (2015) Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int Mater Rev 60:312–329

    Article  CAS  Google Scholar 

  14. Joung SK, Okazaki T, Kishi N, Okada S, Bandow S, Iijima S (2009) Effect of fullerene encapsulation on radial vibrational breathing-mode frequencies of single-wall carbon nanotubes. Phys Rev Lett 103:027403

    Article  Google Scholar 

  15. Joung SK, Okazaki T, Okada S, Iijima S (2010) Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy. Phys Chem Chem Phys 12:8118–8122

    Article  CAS  Google Scholar 

  16. Botos A, Khlobystov AN, Botka B, Hackl R, Székely E, Simándi B, Kamarás K (2010) Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys Status Solidi B 247:2743–2745

    Article  CAS  Google Scholar 

  17. Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S (2001) Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 337(1–3):48–54

    Article  CAS  Google Scholar 

  18. Chadli H, Rahmani A, Sbai K, Sauvajol JL (2005) Raman active modes in carbon peapods. Phys A 358:226–236

    Article  CAS  Google Scholar 

  19. Okada S (2007) Radial-breathing mode frequencies for nanotubes encapsulating fullerenes. Chem Phys Lett 438:59–62

    Article  CAS  Google Scholar 

  20. Mitra M, Gopalakrishnan S (2007) Vibrational characteristics of single-walled carbon-nanotube: time and frequency domain analysis. J Appl Phys 101:114320

    Article  Google Scholar 

  21. Ghavanloo E, Fazelzadeh SA (2015) Continuum modeling of breathing-like modes of spherical carbon onions. Phys Lett A 379:1600–1606

    Article  CAS  Google Scholar 

  22. Ansari R, Mirnezhad M, Sahmani S (2013) An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48:1355–1367

    Article  Google Scholar 

  23. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074

    Article  CAS  Google Scholar 

  24. Saito R, Dresselhous G, Dresselhous MS (1998) Physical properties of carbon nonotubes. Imperial College Press, London

    Book  Google Scholar 

  25. He XQ, Kitipornchai S, Wang CM, Liew KM (2005) Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. Int J Solids Struct 42:6032–6047

    Article  CAS  Google Scholar 

  26. Todt M, Rammerstorfer FG, Fischer FD, Mayrhofer PH, Holec D, Hartmann MA (2011) Continuum modeling of van der Waals interactions between carbon onion layers. Carbon 49:1620–1627

    Article  CAS  Google Scholar 

  27. Kahn D, Kim KW, Stroscio MA (2001) Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model. J Appl Phys 89:5107

    Article  CAS  Google Scholar 

  28. Thamwattana N, Hill MJ (2008) Oscillation of nested fullerenes (carbon onions) in carbon nanotubes. J Nanopart Res 10:665–677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E., Fazelzadeh, S.A. & Rafii-Tabar, H. A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. J Mol Model 23, 48 (2017). https://doi.org/10.1007/s00894-017-3220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3220-4

Keywords

Navigation