Skip to main content
Log in

On the application of the PFEM to droplet dynamics modeling in fuel cells

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The Particle Finite Element Method (PFEM) is used to develop a model to study two-phase flow in fuel cell gas channels. First, the PFEM is used to develop the model of free and sessile droplets. The droplet model is then coupled to an Eulerian, fixed-grid, model for the airflow. The resulting coupled PFEM-Eulerian algorithm is used to study droplet oscillations in an air flow and droplet growth in a low-temperature fuel cell gas channel. Numerical results show good agreement with predicted frequencies of oscillation, contact angle, and deformation of injected droplets in gas channels. The PFEM-based approach provides a novel strategy to study droplet dynamics in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Once again, linear pressure-velocity interpolations have been used for the space discretization while Backward Euler has been applied for the time integration.

  2. For the examples solved in this work, the velocity of the droplet was not having considerable impact upon the airflow. Thus zero velocity can be used at \(\varGamma _\mathrm{I}\).

References

  1. Akhtar N, Kerkhof PJAM (2011) Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode. Int J Hydrog Energy 36(4):3076–3086

    Article  Google Scholar 

  2. Bird R, Stewart W, Lightfoot E (2002) Transport phenomena, 2nd edn. Wiley, Hoboken

    Google Scholar 

  3. Bouwhuis W, Winkels KG, Peters IR, Brunet P, van der Meer D, Snoeijer JH (2013) Oscillating and star-shaped drops levitated by an airflow. Phys Rev E 88:023017

    Article  Google Scholar 

  4. Brennen CE (2005) Fundamentals of multiphase flow, 1st edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Carton J, Lawlor V, Olabi A, Hochenauer C, Zauner G (2012) Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels. Energy 39:63–73

    Article  Google Scholar 

  6. Chen K, Hickner M, Noble D (2005) Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface. Int J Energy Res 29(12):1113–1132

    Article  Google Scholar 

  7. Cho SC, Wang Y, Chen K (2012) Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: forces, deformation, and detachment. I: theoretical and numerical analyses. J Power Sources 206:119–128

    Article  Google Scholar 

  8. Choi J, Son G (2009) Numerical study of droplet dynamics in a PEMFC gas channel with multiple pores. J Mech Sci Technol 23(7):1765–1772

    Article  Google Scholar 

  9. Chorin AJ (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26

    Article  MATH  Google Scholar 

  10. Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190 (20–21):2681–2706. http://www.sciencedirect.com/science/article/pii/S0045782500002607 doi:10.1016/S0045-7825(00)00260-7

  11. Codina R (2001) Pressure stability in fractional step finite element method for incompressible flows. J Comput Phys 170:112–140

    Article  MathSciNet  MATH  Google Scholar 

  12. Crowe CT (2006) Multiphase flow handbook, 1st edn. Taylor & Francis, Abingdon

    MATH  Google Scholar 

  13. Feng Y, Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng Comput 30(2):197–222

    Article  Google Scholar 

  14. Ferreira RB, Falcão DS, Oliveira VB, Pinto AMFR (2015) Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method - A review. J Power Sources 277:329–342

    Article  Google Scholar 

  15. Gerstenberger A, Wall W (2008) An extended finite element/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197:1699–1714

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerstenberger A, Wall W (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82(5):537–563

    MathSciNet  MATH  Google Scholar 

  17. Gopala V, van Wachem G (2008) Volume of fluid methods for immiscible-fluid and free-surface flows. Chem Eng J 141:204–221

    Article  Google Scholar 

  18. Guermond J, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Methods Appl Mech Eng 195:6011–6045

    Article  MathSciNet  MATH  Google Scholar 

  19. Idelsohn SR, Oñate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989

    Article  MathSciNet  MATH  Google Scholar 

  20. Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Elsevier, Waltham

    Google Scholar 

  21. Jarauta A, Ryzhakov PB, Secanell M, Waghmare PR, Pons-Prats J (2015) Numerical study of droplet dynamics in a Proton Exchange Fuel Cell gas channel using an embedded formulation. J Power Sources (submitted)

  22. Jarauta A, Secanell M, Pons-Prats J, Ryzhakov PB, Idelsohn SR, Oñate E (2015) A semi-analytical model for droplet dynamics on the GDL surface of a PEFC electrode. Int J Hydrog Energy 40:5375–5383

    Article  Google Scholar 

  23. Kamran K, Rossi R, Onate E, Idelsohn S (2013) A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles. Comput Methods Appl Mech Eng 255:210–225

    Article  MathSciNet  MATH  Google Scholar 

  24. Kandlikar S, Lu Z, Domigan W, White A, Benedict M (2009) Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in pemfc water management studies. Int J Heat Mass Transf 52(7):1741–1752

    Article  Google Scholar 

  25. Küttler U, Wall W (2009) Vector extrapolation for strong coupling fluid-structure interaction solvers. J Appl Mech 76(2):021–205

    Article  Google Scholar 

  26. Lamb H (1916) Hydrodynamics, 4th edn. Cambridge University Press, Cambridge. https://books.google.es/books?id=d_AoAAAAYAAJ

  27. Marti J, Ryzhakov P, Idelsohn S, Oñate E (2012) Combined Eulerian-PFEM approach for analysis of polymers in fire situations. Int J Numer Methods Eng 92:782–801

    Article  MathSciNet  MATH  Google Scholar 

  28. Mier-Torrecilla, M (2010) Numerical simulation of multi-fluid flows with the Particle Finite Element Method. Ph.D. thesis, Universitat Politécnica de Catalunya

  29. Oñate E, Idelsohn S, del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1:267–307

    Article  MATH  Google Scholar 

  30. Ryzhakov P, Oñate E, Rossi R, Idelsohn S (2010) Lagrangian FE methods for coupled problems in fluid mechanics. CIMNE. ISBN: 978-84-96736-97-9

  31. Ryzhakov PB, Jarauta A (2015) An embedded approach for immiscible multi-fluid problems. Int J Numer Methods Fluids. doi:10.1002/fld.4190

  32. Sussman M, Ohta M (2009) A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J Sci Comput 31:2447–2471

    Article  MathSciNet  MATH  Google Scholar 

  33. Temam R (1969) Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pase fractionaires. Arch Ration Mech Anal 32:135–153

    Article  MathSciNet  MATH  Google Scholar 

  34. Theodorakakos A, Ous T, Gavaises M, Nouri J, Nikolopoulos N, Yanagihara H (2006) Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. J Colloid Interface Sci 300:673–687

    Article  Google Scholar 

  35. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu W, Harvey D, Kusoglu A, Litster S, Mench MM, Mukundan R, Owejan JP, Pharoah JG, Secanell M, Zenyuk IV (2014) A critical review of modeling transport phenomena in Polymer-Electrolyte fuel cells. J Electrochem Soc 161(12):F1254–F1299

    Article  Google Scholar 

  36. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

  37. Wu T, Djilali N (2012) Experimental investigation of water droplet emergence in a model polymer electrolyte membrane fuel cell microchannel. J Power Sources 208:248–256

    Article  Google Scholar 

  38. Zhu X, Sui P, Djilali N (2008) Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel. J Power Sources 181:101–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel B. Ryzhakov.

Ethics declarations

Funding

This work was supported under the auspices of the FPDI-2013-18471 and BES-2011-047702 grants of the Spanish Ministerio de Economia y Competitividad as well as partially funded by the COMETAD project of the National RTD Plan (ref. MAT2014-60435-C2-1-R) of the mentioned ministry.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhakov, P.B., Jarauta, A., Secanell, M. et al. On the application of the PFEM to droplet dynamics modeling in fuel cells. Comp. Part. Mech. 4, 285–295 (2017). https://doi.org/10.1007/s40571-016-0112-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0112-9

Keywords

Navigation