Skip to main content
Log in

Development of a coupled discrete element (DEM)–smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In the present paper, the direct coupling of a discrete element method (DEM) with polyhedral particles and smoothed particle hydrodynamics (SPH) is presented. The two simulation techniques are fully coupled in both ways through interaction forces between the solid DEM particles and the fluid SPH particles. Thus this simulation method provides the possibility to simulate the individual movement of polyhedral, sharp-edged particles as well as the flow field around these particles in fluid-saturated granular matter which occurs in many technical processes e.g. wire sawing, grinding or lapping. The coupled method is exemplified and validated by the simulation of a particle in a shear flow, which shows good agreement with analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    Article  MathSciNet  Google Scholar 

  2. Bierwisch C, Kübler R, Kleer G, Moseler M (2011) Modelling of contact regimes in wire sawing with dissipative particle dynamics. Philos Trans R Soc A 369(1945):2422–2430

    Article  Google Scholar 

  3. Boon CW, Houlsby GT, Utili S (2012) A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput Geotech 44:73–82

    Article  Google Scholar 

  4. Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264

    Article  MathSciNet  MATH  Google Scholar 

  5. Cleary PW, Morrison RD (2012) Prediction of 3d slurry flow within the grinding chamber and discharge from a pilot scale sag mill. Miner Eng 39:184–195

    Article  Google Scholar 

  6. Cundall PA (1988) Formulation of a three-dimensional distinct element model–part i. a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116

    Article  Google Scholar 

  7. Cundall PA, Strack OD (1979) Discrete numerical model for granular assemblies. Int J Rock Mech Min Sci Geomech Abstr 16(4):47–65

    Google Scholar 

  8. Galindo-Torres SA (2013) A coupled discrete element lattice boltzmann method for the simulation of fluid-solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119

    Article  MathSciNet  MATH  Google Scholar 

  9. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  10. Grof Z, Cook J, Lawrence CJ, Štěpánek F (2009) The interaction between small clusters of cohesive particles and laminar flow: coupled dem/cfd approach. J Petrol Sci Eng 66(1–2):24–32

    Article  Google Scholar 

  11. Höfler C (2013) Entwicklung eines Smoothed Particle Hydrodynamics (SPH) Codes zur numerischen Vorhersage des Primärzerfalls an Brennstoffeinspritzdüsen. PhD thesis, Karlsruher Institut für Technologie

  12. Huang YJ, Nydal OJ (2012) Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows. Theor Appl Mech Lett 2(1):012002

    Article  MathSciNet  Google Scholar 

  13. Kloss C, Goniva C, Hager A (2012) Models, algorithms and validation for opensource dem and cfd-dem. Prog Comput Fluid Dyn Int J 12(2/3):140–152

    Article  MathSciNet  Google Scholar 

  14. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    Article  MATH  Google Scholar 

  15. Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem Eng Sci 127:425–465

    Article  Google Scholar 

  16. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  17. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  18. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  19. Monaghan JJ (2000) Sph without a tensile instability. J Comput Phys 159(2):290–311

    Article  MATH  Google Scholar 

  20. Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180(10):1811–1820

    Article  MathSciNet  MATH  Google Scholar 

  21. Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  22. Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. Comput Anim Virtual Worlds 15(3–4):159–171

    Article  Google Scholar 

  23. Nassauer B, Kuna M (2013) Contact forces of polyhedral particles in discrete element method. Granul Matter 15(3):349–355

    Article  Google Scholar 

  24. Nassauer B, Liedke T, Kuna M (2013) Polyhedral particles for the discrete element method: geometry representation, contact detection and particle generation. Granul Matter 15(1):85–93

    Article  Google Scholar 

  25. Nassauer B (2015) Entwicklung einer 3D Diskrete Elemente Methode mit polyederförmigen Partikeln zur Simulation der fluidgekoppelten Prozesse beim Drahtsägen. PhD thesis, TU Bergakademie Freiberg, Freiberg

  26. De Pellegrin DV, Stachowiak GW (2005) Simulation of three-dimensional abrasive particles. Wear 258(1–4):208–216 Second international conference on erosive and abrasive wear

  27. Potapov AV, Hunt ML, Campbell CS (2001) Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technol 116(2–3):204–213

    Article  Google Scholar 

  28. Qiu L-C (2013) Numerical modeling of liquid-particle flows by combining SPH and DEM. Ind Eng Chem Res 52(33):11313–11318

    Article  Google Scholar 

  29. Robinson M, Ramaioli M, Luding S (2014) Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. Int J Multiph Flow 59:121–134

    Article  Google Scholar 

  30. Rozmanov D, Kusalik PG (2010) Robust rotational-velocity-verlet integration methods. Phys Rev 81(5):056706

    MathSciNet  Google Scholar 

  31. Shao S, Lo EYM (2003) Incompressible sph method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  32. Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog Theoret Phys 92(5):939–960

    Article  Google Scholar 

  33. Tao H, Jin B, Zhong W, Wang X, Ren B, Zhang Y, Xiao R (2010) Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem Eng Process 49(2):151–158

    Article  Google Scholar 

  34. Valizadeh Alireza, Monaghan Joseph J (2015) A study of solid wall models for weakly compressible SPH. J Comput Phys 300:5–19

    Article  MathSciNet  Google Scholar 

  35. van Zuijlen AH, Bijl H (2005) Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Comput Struct 83(2–3):93–105 Advances in Analysis of Fluid Structure InteractionAdvances in Analysis of Fluid Structure Interaction

  36. Zhu YI, Fox PJ, Morris JP (1999) A pore-scale numerical model for flow through porous media. Int J Numer Anal Meth Geomech 23(9):881–904

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation in the project KU 929/19-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Liedke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassauer, B., Liedke, T. & Kuna, M. Development of a coupled discrete element (DEM)–smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles. Comp. Part. Mech. 3, 95–106 (2016). https://doi.org/10.1007/s40571-015-0097-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0097-9

Keywords

Navigation