Skip to main content
Log in

The Association Between Ambient Air Pollution and Allergic Rhinitis Inception and Control

  • Allergic Rhinitis (J Maspero, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

A Correction to this article was published on 21 May 2018

This article has been updated

Abstract

Purpose of review

The prevalence of allergic rhinitis as well as other allergic diseases has been increasing for at least five decades. A possible cause of this increase could be the exposure of genetically predisposed individuals to a constantly changing indoor and outdoor environment. Two of the changes strongly implicated in the sensitization process and in the triggering of symptoms of allergic diseases are air pollution and global warming induced by climate change, factors which are closely related to each other.

Recent findings

Environmental pollutants may act on a developing immune and respiratory system, which increases the possibility of a negative impact on the structural and functional maturation of the respiratory system, and on the immune response in children. The increase in allergic respiratory diseases appears to be related with an increase in the atmospheric concentration of gases and respirable particulate matter.

Summary

This article summarizes the main consequences of the complex relationship that exists between allergic rhinitis, environmental pollution, and climate change and presents some potential measures aiming at modifying some aspects of this intriguing relationship to achieve a clinical benefit in patients suffering from allergic diseases, especially allergic rhinitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 21 May 2018

    Unfortunately, the original publication of this article contained mistakes. The publisher introduced an error after proofreading where the family name of the co-author was mistakenly captured as “Fenández Caldas”. The correct family name should be “Fernández-Caldas”.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50.

    Article  CAS  Google Scholar 

  2. • Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014;69:876–8.

    Article  PubMed  Google Scholar 

  3. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41:24–32.

    Article  PubMed  Google Scholar 

  4. IPCC AR4 WG1. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, et al., editors. Cambridge University Press; 2007.

  5. D’Amato G, Pawankar R, Vitale C, Lanza M, Molino A, Stanziola A, et al. Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol Res. 2016;8(5):391–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. • D’Amato G, Vitale C, Lanza M, Molino A, D’Amato M. Climate change, air pollution, and allergic respiratory diseases: an update. Curr Opin Allergy Clin Immunol. 2016;16(5):434–40.

    Article  PubMed  CAS  Google Scholar 

  7. Eggen B. The effect of climate change on our health. J Fam Health. 2016;26(3):37–8.

    PubMed  Google Scholar 

  8. Brożek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010;126:466–76.

    Article  PubMed  Google Scholar 

  9. Padjas A, Kehar R, Aleem S, Mejza F, Bousquet J, Schunemann HJ, et al. Methodological rigor and reporting of clinical practice guidelines in patients with allergic rhinitis: QuGAR study. J Allergy Clin Immunol. 2014;133:777–83 e4.

    Article  PubMed  Google Scholar 

  10. Bousquet J, Lund VJ, Van Cauwenberge P, Bremard-Oury C, Mounedji N, Stevens MT, et al. Implementation of guidelines for seasonal allergic rhinitis: a randomized controlled trial. Allergy. 2003;58:733–41.

    Article  PubMed  CAS  Google Scholar 

  11. Brożek JL, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J Allergy Clin Immunol. 2017;140(4):950–8.

    Article  PubMed  Google Scholar 

  12. Casale TB, Stokes JR. Future forms of immunotherapy. J Allergy Clin Immunol. 2011;127:815.

    Article  Google Scholar 

  13. Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63:8–160.

    Article  PubMed  Google Scholar 

  14. World Health Organization [http://www.who.int/topics/air_pollution/en/] [Last access 01/05/2018]

  15. •• Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J. 2017;49:1.

    Article  CAS  Google Scholar 

  16. Cataletto M. Environmental pollution and its effect on children. Pediatr Allergy Immunol Pulmonol. 2016;29:109–10.

    Article  Google Scholar 

  17. Goldizen FC, Sly PD, Knibbs LD. Respiratory effects of air pollution on children. Pediatr Pulmonol. 2016;51:94–108.

    Article  PubMed  Google Scholar 

  18. Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev. 2017;21:38–46.

    PubMed  Google Scholar 

  19. Kim HJ, Choi MG, Park MK, Seo YR. Predictive and prognostic biomarkers of respiratory diseases due to particulate matter exposure. Cancer Prev. 2017;22:6–15.

    Article  Google Scholar 

  20. Espósito S, Tenconi R, Lelii M, Preti V, Nazzari E, Consolo S, et al. Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med. 2014;14:31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Ji H, Biagini Myers JM, Brandt EB, Brokamp C, Ryan PH, Khurana Hershey GK. Air pollution, epigenetics, and asthma. Allergy Asthma Clin Immunol. 2016;12:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. DeVries A, Vercelli D. Epigenetic mechanisms in asthma. Ann Am Thorac Soc. 2016;13(Suppl. 19):S48–50.

    PubMed  PubMed Central  Google Scholar 

  23. D’Amato G, Liccardi G, D’Amato M. Environmental risk factors (outdoor air pollution and climatic changes) and increased trend of respiratory allergy. J Investig Allergol Clin Immunol. 2000;10:33–9.

    Google Scholar 

  24. D’Amato G, Liccardi G, D’Amato M, Cazzola M. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur Respir J. 2002;20:763–76.

    Article  PubMed  CAS  Google Scholar 

  25. D’Amato G, Liccardi G, D’Amato M, Holgate ST. Environmental risk factors and allergic bronchial asthma. Clin Exp Allergy. 2005;35:1113–24.

    Article  PubMed  Google Scholar 

  26. Gilmour MI, Jaakkola MS, London SJ, Nel AE, Rogers CA. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens infl uences the incidence of asthma. Environ Health Perspect. 2006;114:627–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nordling E, Berglind N, Melén E, Emenius G, Hallberg J, Nyberg F, et al. Traffic related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology. 2008;19(3):401–8.

    Article  PubMed  Google Scholar 

  28. • D’Amato G, Cecchi L, D’Amato M, Liccardi G. Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol. 2010;20(2):95–102.

    PubMed  Google Scholar 

  29. Lindgren A, Stroh E, Nihlén U, Montnémery P, Axmon A, Jakobsson K. Traffic exposure associated with allergic asthma and allergic rhinitis in adults. A cross-sectional study in southern Sweden. Int J Health Geogr. 2009;8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim B, Kwon W, Seo H, Kim HB, Lee SY, Park KS, et al. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization. Ann Allergy Asthma Immunol. 2011;107:214–9.

    Article  PubMed  CAS  Google Scholar 

  31. Nordling E, Berglind N, Melén E, Emenius G, Hallberg J, Nyberg F, et al. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology. 2008;19:401–8.

    Article  PubMed  Google Scholar 

  32. Wang KY, Chau TT. An association between air pollution and daily outpatient visits for respiratory disease in a heavy industry area. PLoS ONE. 2013;8:e75220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Teng B, Zhang X, Yi C, Zhang Y, Ye S, Wang Y, et al. The association between ambient air pollution and allergic rhinitis: further epidemiological evidence from Changchun, Northeastern China. Int J Environ Res Public Health. 2017;14(3):226.

    Article  PubMed Central  CAS  Google Scholar 

  34. Scientific consensus: Earth’s climate is warming. [In https://climate.nasa.gov/scientific-consensus/] [Last access 01/05/2018].

  35. IPCC. Climate change 2014: synthesis report. Core Writing Team, R.K. Pachauri and L.A. Meyer eds. IPCC, Geneva; 2014, 151.

  36. D’Amato G, Vitale C, De Martino A, Viegi G, Lanza M, Molino A, et al. Effects on asthma and respiratory allergy of climate change and air pollution. Multidiscip Respir Med. 2015;10:39.

    Article  PubMed  PubMed Central  Google Scholar 

  37. •• Beggs PJ. Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy. 2004;34:1507–13.

    Article  PubMed  CAS  Google Scholar 

  38. Klironomos JN, Rillig MC, Allen MF, Zak DR, Pregitzer KS, Kubiske ME. Increased levels of airborne fungal spores in response to Populus tremuloides grown under elevated atmospheric CO2. Can J Bot. 1997;75(10):1670–3.

    Article  Google Scholar 

  39. Lang-Yona N, Levin Y, Dannemiller KC, Yarden O, Peccia J, Rudich Y. Changes in atmospheric CO2 influence the allergenicity of Aspergillus fumigatus. Glob Chang Biol. 2013;19(8):2381–8.

    Article  PubMed  Google Scholar 

  40. Wolf J, O’Neill NR, Rogers CA, Muilenberg ML, Ziska LH. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environ Health Perspect. 2010;118(9):1223–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kasprzyk I, Rodinkova V, Šauliene I, Ritenberga O, Grinn-Gofron A, Nowak M, et al. Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environ Sci Pollut Res. 2015;22(12):9260–74.

    Article  CAS  Google Scholar 

  42. • Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, et al. Air pollution and climate change effects on allergies in the Anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol. 2017;51:4119–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir Med. 2015;3:933–42.

    Article  PubMed  CAS  Google Scholar 

  44. Höflich C, Balakirski G, Hajdu Z, Baron JM, Kaiser L, Czaja K, et al. Potential health risk of allergenic pollen with climate change associated spreading capacity: ragweed and olive sensitization in two German federal states. Int J Hyg Environ Health. 2016;219:252–60.

    Article  PubMed  Google Scholar 

  45. Dunlop J, Matsui E, Sharma HP. Allergic rhinitis. Environmental determinants. Immunol Allergy Clin N Am. 2016;36(2):367–77.

    Article  Google Scholar 

  46. Silverberg JI, Braunstein M, Lee-Wong M. Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States. J Allergy Clin Immunol. 2015;135(2):463–9.

    Article  PubMed  Google Scholar 

  47. Upperman CR, Parker JD, Akinbami LJ, Jiang C, He X, Murtugudde R, et al. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US Adults: 1997–2013. J Allergy Clin Immunol Pract. 2017;5:435–41.

    Article  PubMed  Google Scholar 

  48. Swanson MC, Agarwal MK, Reed CE. An immunochemical approach to indoor aeroallergen quantitation with a new volumetric air sampler: studies with mite, roach, cat, mouse, and guinea pig antigens. J Allergy Clin Immunol. 1985;76:724–9.

    Article  PubMed  CAS  Google Scholar 

  49. Chapman MD, Heymann PW, Wilkins SR, Brown MJ, Platts-Mills TA. Monoclonal immunoassays for major dust mite (Dermatophagoides) allergens Der p I and Der f I, and quantitative analysis of the allergen content of mite and house dust extracts. J Allergy Clin Immunol. 1987;80:184–94.

    Article  PubMed  CAS  Google Scholar 

  50. Voorhorst R, Spieksma FTM, Varekamp H, Leupen MJ, Lyklema AW. The house mite (Dermatophagoides pteronyssinus) and the allergens it produces: identity with the house dust allergen. J Allergy. 1967;39:325–39.

    Article  Google Scholar 

  51. Chung HY, Hsieh CJ, Tseng CC, Yiin LM. Association between the first occurrence of allergic rhinitis in preschool children and air pollution in Taiwan. Int J Environ Res Public Health. 2016;13:268.

    Article  PubMed Central  CAS  Google Scholar 

  52. Biagioni BJ, Tam S, Chen YR, Sin DD, Carlsten C. Effect of controlled human exposure to diesel exhaust and allergen on airway surfactant protein D, myeloperoxidase, and club (Clara) cell secretory protein 16. Clin Exp Allergy. 2016;46(9):1206–13.

    Article  PubMed  CAS  Google Scholar 

  53. D’Amato G. Urban air pollution and plantderived respiratory allergy: a review. Clin Exp Allergy. 2000;30:628–36.

    Article  PubMed  Google Scholar 

  54. Ariano R, Canonica GW, Passalacqua G. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol. 2010;104:215–22.

    Article  PubMed  Google Scholar 

  55. Cecchi L, Morabito M, Domeneghetti MP, Crisci A, Onorari M, Orlandini S. Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol. 2006;96:86–91.

    Article  PubMed  Google Scholar 

  56. Zhang Y, Bielory L, Mi Z, Cai T, Robock A, Georgopoulos P. Allergenic pollen season variations in the past two decades under changing climate in the United States. Glob Chang Biol. 2015;21:1581–9.

    Article  PubMed  CAS  Google Scholar 

  57. Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol. 2015;136:87–95.

    Article  PubMed  CAS  Google Scholar 

  58. Tolcachier A. Contaminación del aire en áreas urbanas. Medicina Ambiental. Intramed virtual book found in http://www.intramed.net/sitios/libro_virtual4/6.pdf. [accessed 01/05/2018].

  59. Air Pollution and Children’s Health. A fact sheet by Cal/EPA’s Office of Environmental Health Hazard Assement and The American Lung Association of California. November 2003. Available: https://oehha.ca.gov/air/air-pollution-and-childrens-health-fact-sheet-oehha-and-american-lung-association [accessed 01/05/2018].

  60. WHO. 2002. Reducing risks, promoting healthy life. The World Health Report 2002. Geneva:World Health Organization. Available: http://www.who.int/whr/2002/en/ [accessed 01/05/2018].

  61. Annesi-Maesano I. United Nations Climate Change Conferences: COP21 a lost opportunity for asthma and allergies and preparing for COP22. J Allergy Clin Immunol. 2016;138(1):57–8.

    Article  PubMed  Google Scholar 

  62. Argentina – Managing environmental pollution: issues and options, Volume I – summary report, World Bank Report N° 14,070-AR, 1995. Available: http://documents.worldbank.org/curated/en/761481468769300309/Summary-report [accessed 01/05/2018].

  63. Friedrich MJ. Medical community gathers steam to tackle climate’s health effects. JAMA. 2017;317(15):1511–3.

    Article  PubMed  CAS  Google Scholar 

  64. •• Le Cann P, Paulus H, Glorennec P, Le Bot B, Frain S, Gangneux JP. Home environmental interventions for the prevention or control of allergic and respiratory diseases: what really works. J Allergy Clin Immunol Pract. 2017;5(1):66–79.

    Article  PubMed  Google Scholar 

  65. • Belice PJ, Becker EA. Effective education parameters for trigger remediation in underserved children with asthma: a systematic review. J Asthma. 2017;(2):186–201.

  66. Dilley MA, Phipatanakul W. Environmental control measures for the management of atopy. Ann Allergy Asthma Immunol. 2017;118(2):154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  67. • Matsui EC, Abramson SL, Sandel MT; Section on Allergy and Immunology; Council on Environmental Health. Indoor environmental control practices and asthma management. Pediatrics. 2016;138(5).

  68. •• Gold DR, Adamkiewicz G, Arshad SH, Celedón JC, Chapman MD, Chew GL, Cook DN, Custovic A, Gehring U, Gern JE, Johnson CC, Kennedy S, Koutrakis P, Leaderer B, Mitchell H, Litonjua AA, Mueller GA, O’Connor GT, Ownby D, Phipatanakul W, Persky V, Perzanowski MS, Ramsey CD, Salo PM, Schwaninger JM, Sordillo JE, Spira A, Suglia SF, Togias A, Zeldin DC, Matsui EC. NIAID, NIEHS, NHLBI, and MCAN Workshop Report: the indoor environment and childhood asthma—implications for home environmental intervention in asthma prevention and management. J Allergy Clin Immunol. 2017;140(4):933–949.

  69. Arlian LG, Platts-Mills TAE. The biology of dust mites and the remediation of mite allergens in allergic disease. J Allergy Clin Immunol. 2001;107:S406.

    Article  PubMed  CAS  Google Scholar 

  70. Semic Jusufagic A, Simpson A, Woodcock A. Dust mite allergen avoidance as a preventive and therapeutic strategy. Curr Allergy Asthma Rep. 2006;6(6):521–6.

    Article  PubMed  Google Scholar 

  71. Fernández-Caldas E. Dust mite allergens: mitigation and control. Curr Allergy Asthma Rep. 2002;2(5):424–31.

    Article  PubMed  Google Scholar 

  72. Rabito FA, Carlson JC, He H, Werthmann D, Schal C. A single intervention for cockroach control reduces cockroach exposure and asthma morbidity in children. J Allergy Clin Immunol. 2017;140(2):565–570.

  73. Sheehan WJ, Rangsithienchai PA, Wood RA, Rivard D, Chinratanapisit S, Perzanowski MS, et al. Pest and allergen exposure and abatement in inner-city asthma: a work group report of the American Academy of Allergy, Asthma & Immunology Indoor Allergy/Air Pollution Committee. J Allergy Clin Immunol. 2010;125(3):575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gergen PJ, Mortimer KM, Eggleston OA, Rosenstreich D, Mitchell H, Ownby D, et al. Results of the National Cooperative Inner City Asthma Study (NCICAS) environmental intervention to reduce cockroach allergen exposure in inner-city homes. J Allergy Clin Immunol. 1999;103:501–6.

    Article  PubMed  CAS  Google Scholar 

  75. Avner DB, Perzanowski MS, Platts-Mills TAE, Woodfolk JA. Evaluation of different techniques for washing cats: quantitation of allergen removed from the cat and effect on airborne Fel d 1. J Allergy Clin Immunol. 1997;100:307–12.

    Article  PubMed  CAS  Google Scholar 

  76. Schönberger HJAM, Maas T, Dompeling E, Knottnerus JA, van Weel C, van Schayck CP. Compliance of asthmatic families with a primary prevention programme of asthma and effectiveness of measures to reduce inhalant allergens—a randomized trial. Clin Exp Allergy. 2004;34:1024–31.

    Article  PubMed  Google Scholar 

  77. Morgan WJ, Crain EF, Gruchalla RS, O’Connor GT, Kattan M, Evans RIII, et al. Inner-City Asthma Study Group. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351:1068–80.

    Article  PubMed  CAS  Google Scholar 

  78. Bush RK. The role of fungal allergens: assessment and control. In: Bush RK, editor. Environmental asthma. New York: Marcel Dekker; 2001. p. 69–90.

    Google Scholar 

  79. Sauni R, Uitti J, Jauhiainen M, Kreiss K, Sigsgaard T, Verbeek JH. Remediating buildings damaged by dampness and mould for preventing or reducing respiratory tract symptoms, infections and asthma. Cochrane Database Syst Rev. 2011;9:CD007897.

    Google Scholar 

  80. Barnes CS, Horner WE, Kennedy K, Grimes C, Miller JD. Environmental Allergens Workgroup. Home assessment and remediation. J Allergy Clin Immunol Pract. 2016;4(3):423–31.

    Article  PubMed  Google Scholar 

  81. Leaf A. Potential health effects of global climatic and environmental changes. N Engl J Med. 1989;321:1577–83.

    Article  PubMed  CAS  Google Scholar 

  82. Sarfaty M, Kreslake JM, Casale TB, Maibach EW. Views of AAAAI members on climate change and health. J Allergy Clin Immunol Pract. 2016;4(2):333–5.e26.

    Article  PubMed  Google Scholar 

  83. Schwartz J. Science, politics, and health: the Environmental Protection Agency at the threshold. Epidemiology. 2017;28(3):316–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ledit R. F. Ardusso MD.

Ethics declarations

Conflict of Interest

Ledit R. F. Ardusso declares that he has no conflict of interest.

Enrique Fernández-Caldas declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

The original version of this article was revised: The publisher introduced an error after proofreading where the family name of the co-author was mistakenly captured as “Fenández Caldas”. The correct family name should be “Fernández-Caldas”.

This article is part of the Topical Collection on Allergic Rhinitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardusso, L.R.F., Fernández-Caldas, E. The Association Between Ambient Air Pollution and Allergic Rhinitis Inception and Control. Curr Treat Options Allergy 5, 221–235 (2018). https://doi.org/10.1007/s40521-018-0162-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-018-0162-8

Keywords

Navigation