Skip to main content
Log in

Genetic predisposition to white blood cells in relation to the risk of frailty

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Observational studies have suggested an association between white blood cells (WBCs) and frailty, but considering the susceptibility to reverse causality and confounding, the causal direction and magnitude of this association remain ambiguous. Our aim was to investigate the causal effect of WBCs on frailty by means of a Mendelian randomization (MR) analysis.

Methods

Based on the genome-wide association study (GWAS) summary statistics data provided by the European Bioinformatics Institute (EBI), we carried out a two-sample MR study. We applied the genetically predicted independent WBCs from GWAS as a measure of exposure data. The Rockwood Frailty Index (FI) was used as outcome measure, which was derived from a meta-analysis from GWAS in UK Biobank European ancestry participants and Swedish TwinGene participants. Our study applied inverse variance weighted (IVW), weighted median, Mendelian randomization-Egger (MR-Egger) and outlier test (MR-PRESSO) methods to explore relationships between various WBCs and frailty.

Results

In our study, a possible causal relationship between eosinophil levels and frailty was demonstrated by two-sample MR analysis. Eosinophils were associated with FI (beta:0.0609; 95% CI 0.0382, 0.0836; P = 1.38E–07). Our results suggest that as the level of eosinophils increases, so does the risk of frailty. No meaningful causal relationship between neutrophils, lymphocytes, monocytes or basophils and FI was found in the MR results (P > 0.05).

Conclusions

According to this MR study, higher eosinophil counts are related to an increased risk of frailty. To validate these findings and investigate the mechanisms underlying these connections, future studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Dent E, Martin FC, Bergman H et al (2019) Management of frailty: opportunities, challenges, and future directions. Lancet 394:1376–1386. https://doi.org/10.1016/S0140-6736(19)31785-4

    Article  PubMed  Google Scholar 

  2. Hoogendijk EO, Afilalo J, Ensrud KE et al (2019) Frailty: implications for clinical practice and public health. Lancet 394:1365–1375. https://doi.org/10.1016/S0140-6736(19)31786-6

    Article  PubMed  Google Scholar 

  3. Kojima G, Iliffe S, Walters K (2018) Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing 47:193–200. https://doi.org/10.1093/ageing/afx162

    Article  PubMed  Google Scholar 

  4. Mitnitski AB, Mogilner AJ, Rockwood K (2001) Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal 1:323–336. https://doi.org/10.1100/tsw.2001.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao X, Li H, Leng SX (2011) Inflammation and immune system alterations in frailty. Clin Geriatr Med 27:79–87. https://doi.org/10.1016/j.cger.2010.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li H, Manwani B, Leng SX (2011) Frailty, inflammation, and immunity. Aging Dis 2:466–473

    PubMed  PubMed Central  Google Scholar 

  8. Rea IM, Gibson DS, McGilligan V et al (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586. https://doi.org/10.3389/fimmu.2018.00586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Honda T, Uehara T, Matsumoto G et al (2016) Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin Chim Acta 457:46–53. https://doi.org/10.1016/j.cca.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Garrido J, Ruiz-Ros V, Navarro-Martínez R et al (2018) Frailty and leucocyte count are predictors of all-cause mortality and hospitalization length in non-demented institutionalized older women. Exp Gerontol 103:80–86. https://doi.org/10.1016/j.exger.2018.01.007

    Article  PubMed  Google Scholar 

  11. Leng SX, Xue Q-L, Tian J et al (2007) Inflammation and frailty in older women. J Am Geriatr Soc 55:864–871. https://doi.org/10.1111/j.1532-5415.2007.01186.x

    Article  PubMed  Google Scholar 

  12. Sleiman PMA, Grant SFA (2010) Mendelian randomization in the era of genomewide association studies. Clin Chem 56:723–728. https://doi.org/10.1373/clinchem.2009.141564

    Article  CAS  PubMed  Google Scholar 

  13. Sekula P, Del Greco MF, Pattaro C et al (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27:3253–3265. https://doi.org/10.1681/ASN.2016010098

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boehm FJ, Zhou X (2022) Statistical methods for Mendelian randomization in genome-wide association studies: a review. Comput Struct Biotechnol J 20:2338–2351. https://doi.org/10.1016/j.csbj.2022.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith GD, Ebrahim S (2003) “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22. https://doi.org/10.1093/ije/dyg070

    Article  PubMed  Google Scholar 

  16. Lv J, Wu L, Sun S et al (2023) Smoking, alcohol consumption, and frailty: a Mendelian randomization study. Front Genet 14:1092410. https://doi.org/10.3389/fgene.2023.1092410

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mourtzi N, Georgakis M, Ntanasi E et al (2023) Genetically downregulated Interleukin-6 signalling is associated with a lower risk of frailty. Age Ageing. https://doi.org/10.1093/ageing/afac318

    Article  PubMed  Google Scholar 

  18. Tomata Y, Wang Y, Hägg S et al (2022) Protein nutritional status and frailty: a Mendelian randomization study. J Nutr 152:269–275. https://doi.org/10.1093/jn/nxab348

    Article  PubMed  Google Scholar 

  19. Tomata Y, Wang Y, Hägg S et al (2021) Fatty acids and frailty: a mendelian randomization study. Nutrients 13:3539. https://doi.org/10.3390/nu13103539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Astle WJ, Elding H, Jiang T et al (2016) The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167:1415-1429.e19. https://doi.org/10.1016/j.cell.2016.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Atkins JL, Jylhävä J, Pedersen NL et al (2021) A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell 20:e13459. https://doi.org/10.1111/acel.13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burgess S, Thompson SG, CRP CHD Genetics Collaboration (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40:755–764. https://doi.org/10.1093/ije/dyr036

    Article  PubMed  Google Scholar 

  23. Blodgett J, Theou O, Kirkland S et al (2015) Frailty in NHANES: comparing the frailty index and phenotype. Arch Gerontol Geriatr 60:464–470. https://doi.org/10.1016/j.archger.2015.01.016

    Article  PubMed  Google Scholar 

  24. Rockwood K, Mitnitski A (2007) Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci 62:722–727. https://doi.org/10.1093/gerona/62.7.722

    Article  PubMed  Google Scholar 

  25. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brion M-JA, Shakhbazov K, Visscher PM (2013) Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 42:1497–1501. https://doi.org/10.1093/ije/dyt179

    Article  PubMed  Google Scholar 

  27. Burgess S, Thompson SG (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181:251–260. https://doi.org/10.1093/aje/kwu283

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franceschi C, Bonafè M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

    Article  CAS  PubMed  Google Scholar 

  29. Soysal P, Stubbs B, Lucato P et al (2016) Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev 31:1–8. https://doi.org/10.1016/j.arr.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  30. Cheng Z, He D, Li J et al (2022) C-reactive protein and white blood cell are associated with frailty progression: a longitudinal study. Immun Ageing 19:29. https://doi.org/10.1186/s12979-022-00280-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Immune System Dysfunction in the Elderly-PubMed. https://pubmed.ncbi.nlm.nih.gov/28423084/. Accessed 1 May 2023

  32. Compté N, Bailly B, De Breucker S et al (2015) Study of the association of total and differential white blood cell counts with geriatric conditions, cardio-vascular diseases, seric IL-6 levels and telomere length. Exp Gerontol 61:105–112. https://doi.org/10.1016/j.exger.2014.11.016

    Article  PubMed  Google Scholar 

  33. Leng SX, Hung W, Cappola AR et al (2009) White blood cell counts, insulin-like growth factor-1 levels, and frailty in community-dwelling older women. J Gerontol A Biol Sci Med Sci 64:499–502. https://doi.org/10.1093/gerona/gln047

    Article  CAS  PubMed  Google Scholar 

  34. Samson LD, Engelfriet P, Verschuren WMM et al (2022) Impaired JAK-STAT pathway signaling in leukocytes of the frail elderly. Immun Ageing 19:5. https://doi.org/10.1186/s12979-021-00261-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174. https://doi.org/10.1146/annurev.immunol.24.021605.090720

    Article  CAS  PubMed  Google Scholar 

  36. Fernández-Garrido J, Navarro-Martínez R, Buigues-González C et al (2014) The value of neutrophil and lymphocyte count in frail older women. Exp Gerontol 54:35–41. https://doi.org/10.1016/j.exger.2013.11.019

    Article  PubMed  Google Scholar 

  37. Valdiglesias V, Sánchez-Flores M, Maseda A et al (2015) Lymphocyte subsets in a population of nonfrail elderly individuals. J Toxicol Environ Health A 78:790–804. https://doi.org/10.1080/15287394.2015.1051170

    Article  CAS  PubMed  Google Scholar 

  38. Marcos-Pérez D, Sánchez-Flores M, Maseda A et al (2018) Frailty in older adults is associated with plasma concentrations of inflammatory mediators but not with lymphocyte subpopulations. Front Immunol 9:1056. https://doi.org/10.3389/fimmu.2018.01056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Admission neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio to predict 30-day and 1-year mortality in geriatric hip fractures-PubMed. https://pubmed.ncbi.nlm.nih.gov/32739153/. Accessed 1 May 2023

  40. Cybularz M, Wydra S, Berndt K et al (2021) Frailty is associated with chronic inflammation and pro-inflammatory monocyte subpopulations. Exp Gerontol 149:111317. https://doi.org/10.1016/j.exger.2021.111317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our data, analytic methods or materials are available to other researchers. We used summary statistics from a genome-wide association study (GWAS) and then performed two-sample MR analyses. Details are in the section of the original article. Since the data can be available to everyone, the studies reported in the manuscript were not pre-registered.This study was funded by the National Key R&D Program of China (2020YFC2008900), the National Natural Science Foundation of China (81701366), Zhejiang Public Welfare Technology Application Program Project (LGF22H250001), the Medical Health Science and Technology Project of Zhejiang Province(2022RC149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-jin Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics for this research was obtained from Ethics Review Committee of the First Affiliated Hospital of Zhejiang University School of Medicine.

Informed consent

All participants signed written informed consent forms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhao, Xh., Zhou, Sx. et al. Genetic predisposition to white blood cells in relation to the risk of frailty. Aging Clin Exp Res 35, 3023–3031 (2023). https://doi.org/10.1007/s40520-023-02609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02609-2

Keywords

Navigation