Skip to main content

Advertisement

Log in

In silico identification of the rare-coding pathogenic mutations and structural modeling of human NNAT gene associated with anorexia nervosa

  • Original Article
  • Published:
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity Aims and scope Submit manuscript

Abstract

Purpose

Increased susceptibility towards anorexia nervosa (AN) was reported with reduced levels of neuronatin (NNAT) gene. We sought to investigate the most pathogenic rare-coding missense mutations, non-synonymous single-nucleotide polymorphisms (nsSNPs) of NNAT and their potential damaging impact on protein function through transcript level sequence and structure based in silico approaches.

Methods

Gene sequence, single nucleotide polymorphisms (SNPs) of NNAT was retrieved from public databases and the putative post-translational modification (PTM) sites were analyzed. Distinctive in silico algorithms were recruited for transcript level SNPs analyses and to characterized high-risk rare-coding nsSNPs along with their impact on protein stability function. Ab initio 3D-modeling of wild-type, alternate model prediction for most deleterious nsSNP, validation and recognition of druggable binding pockets were also performed. AN 3D therapeutic compounds that followed rule of drug-likeness were docked with most pathogenic variant of NNAT to estimate the drugs’ binding free energies.

Results

Conclusively, 10 transcript (201–205)-based nsSNPs from 3 rare-coding missense variants, i.e., rs539681368, rs542858994, rs560845323 out of 840 exonic SNPs were identified. Transcript-based functional impact analyses predicted rs539681368 (C30Y) from NNAT-204 as the high-risk rare-coding pathogenic nsSNP, deviating protein functions. The 3D-modeling analysis of AN drugs’ binding energies indicated lowest binding free energy (ΔG) and significant inhibition constant (Ki) with mutant models C30Y.

Conclusions

Mutant model (C30Y) exhibiting significant drug binding affinity and the commonest interaction observed at the acetylation site K59. Thus, based on these findings, we concluded that the identified nsSNP may serve as potential targets for various studies, diagnosis and therapeutic interventions.

Level of evidence

No level of evidence—open access bioinformatics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in the article are given with the information from where the data were taken.

References

  1. Wu J, Liu J, Li S, Ma H, Wang Y (2020) Trends in the prevalence and disability-adjusted life years of eating disorders from 1990 to 2017: results from the Global Burden of Disease Study 2017. Epidemiol Psychiatr Sci 29:e191. https://doi.org/10.1017/S2045796020001055

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lombardi L, Blanchet C, Poirier K, Lebrun N, Ramoz N, Moro MR, Gorwood P, Bienvenu T (2019) Anorexia nervosa is associated with Neuronatin variants. Psychiatr Genet 29:103–110. https://doi.org/10.1097/YPG.0000000000000224

    Article  CAS  PubMed  Google Scholar 

  3. Batista M, Žigić Antić L, Žaja O, Jakovina T, Begovac I (2018) Predictors of eating disorder risk in anorexia nervosa adolescents. Acta Clin Croat 57:399–410. https://doi.org/10.20471/acc.2018.57.03.01

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kwok C, Kwok V, Lee HY, Tan SM (2020) Clinical and socio-demographic features in childhood vs adolescent-onset anorexia nervosa in an Asian population. Eat Weight Disord 25:821–826. https://doi.org/10.1007/s40519-019-00694-9

    Article  PubMed  Google Scholar 

  5. Mumford DB, Whitehouse AM, Platts M (1991) Sociocultural correlates of eating disorders among Asian schoolgirls in Bradford. Br J Psychiatry 158:222–228. https://doi.org/10.1192/bjp.158.2.222

    Article  CAS  PubMed  Google Scholar 

  6. Tareen A, Hodes M, Rangel L (2005) Non-fat–phobic anorexia nervosa in British South Asian adolescents. Int J Eat Disord 37:161–165. https://doi.org/10.1002/eat.20080

    Article  PubMed  Google Scholar 

  7. Babar N, Alam M, Ali SS, Ansari A, Atiq M, Awais A, Amin F, Israr SM (2002) Anorexic behaviour and attitudes among female medical and nursing students at a private university hospital. J Pak Med Assoc 52:272–276

    CAS  PubMed  Google Scholar 

  8. Hisam A, Rahman MU, Mashhadi SF (2015) Anorexia nervosa among teenage girls: emerging or prevalent? Pak J Med Sci 31:1290–1294. https://doi.org/10.12669/pjms.316.7617

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vrang N, Meyre D, Froguel P, Jelsing J, Tang-Christensen M, Vatin V, Mikkelsen JD, Thirstrup K, Larsen LK, Cullberg KB, Fahrenkrug J (2010) The imprinted gene neuronatin is regulated by metabolic status and associated with obesity. Obesity 18:1289–1296. https://doi.org/10.1038/oby.2009.361

    Article  PubMed  Google Scholar 

  10. Ceccarini MR, Precone V, Manara E, Paolacci S, Maltese PE, Benfatti V, Dhuli K, Donato K, Guerri G, Marceddu G, Chiurazzi P (2021) A next generation sequencing gene panel for use in the diagnosis of anorexia nervosa. Eat Weight Disord 25:1–12. https://doi.org/10.1007/s40519-021-01331-0

    Article  Google Scholar 

  11. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  PubMed  Google Scholar 

  12. GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–1330. https://doi.org/10.1126/science.aaz1776

    Article  CAS  Google Scholar 

  13. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. https://doi.org/10.1093/nar/gkq537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  Google Scholar 

  15. Hunt SE, Moore B, Amode RM, Armean IM, Lemos D, Mushtaq A, Parton A, Schuilenburg H, Szpak M, Thormann A, Perry E (2021) Annotating and prioritizing genomic variants using the ensemble variant effect predictor—a tutorial. Hum Mutat. https://doi.org/10.1002/humu.24298

    Article  PubMed  PubMed Central  Google Scholar 

  16. Linck E, Battey CJ (2019) Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol Ecol Resour 19:639–647. https://doi.org/10.1111/1755-0998.12995

    Article  CAS  PubMed  Google Scholar 

  17. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9. https://doi.org/10.1038/nprot.2015.123

    Article  CAS  PubMed  Google Scholar 

  18. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7–20. https://doi.org/10.1002/0471142905.hg0720s76

    Article  Google Scholar 

  19. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886-894. https://doi.org/10.1093/nar/gky1016

    Article  CAS  PubMed  Google Scholar 

  20. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, Cannon-Albright LA (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:877–885. https://doi.org/10.1016/j.ajhg.2016.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S, Cummins C (2019) Ensembl 2019. Nucleic Acids Res 47:D745–D751. https://doi.org/10.1093/nar/gky1113

    Article  CAS  PubMed  Google Scholar 

  22. Frousios K, Iliopoulos CS, Schlitt T, Simpson MA (2013) Predicting the functional consequences of non-synonymous DNA sequence variants—evaluation of bioinformatics tools and development of a consensus strategy. Genomics 102:223–228. https://doi.org/10.1016/j.ygeno.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  23. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Capriotti E, Fariselli P (2017) PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res 45:W247–W252. https://doi.org/10.1093/nar/gkx369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genom 16:1–2. https://doi.org/10.1186/1471-2164-16-S8-S1

    Article  CAS  Google Scholar 

  26. Capriotti E, Martelli PL, Fariselli P, Casadio R (2017) Blind prediction of deleterious amino acid variations with SNPs&GO. Hum Mutat 38:1064–1071. https://doi.org/10.1002/humu.23179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. López-Ferrando V, Gazzo A, De La Cruz X, Orozco M, Gelpí JL (2017) PMut: a web-based tool for the annotation of pathological variants on proteins. Nucleic Acids Res 45:W222–W228. https://doi.org/10.1093/nar/gkx313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam HJ, Mort M, Cooper DN, Sebat J, Iakoucheva LM, Mooney SD (2020) Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-19669-x

    Article  CAS  Google Scholar 

  29. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10:e1003440. https://doi.org/10.1371/journal.pcbi.1003440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31:675–684. https://doi.org/10.1002/humu.21242

    Article  CAS  PubMed  Google Scholar 

  31. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734. https://doi.org/10.1093/bioinformatics/btl423

    Article  CAS  PubMed  Google Scholar 

  32. Chen CW, Lin MH, Liao CC, Chang HP, Chu YW (2020) iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J 18:622–630. https://doi.org/10.1016/j.csbj.2020.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savojardo C, Fariselli P, Martelli PL, Casadio R (2016) INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics 32:2542–2544. https://doi.org/10.1093/bioinformatics/btw192

    Article  CAS  PubMed  Google Scholar 

  34. Angamuthu K, Piramanayagam S (2017) Evaluation of in silico protein secondary structure prediction methods by employing statistical techniques. Biomed Biotech Res J 1:29–36. https://doi.org/10.4103/bbrj.bbrj_28_17

    Article  Google Scholar 

  35. Dunlavy DM, O’leary DP, Klimov D, Thirumalai D, (2005) HOPE: a homotopy optimization method for protein structure prediction. J Comput Biol 12:1275–1288. https://doi.org/10.1089/cmb.2005.12.1275

    Article  CAS  PubMed  Google Scholar 

  36. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Hönigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42:W337–W343. https://doi.org/10.1093/nar/gku366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztányi Z, El-Gebali S, Fraser M, Gough J (2017) InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107

    Article  CAS  PubMed  Google Scholar 

  38. Wang D, Liu D, Yuchi J, He F, Jiang Y, Cai S, Li J, Xu D (2020) MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res 48:W140–W146. https://doi.org/10.1093/nar/gkaa275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Velankar S, Burley SK, Kurisu G, Hoch JC, Markley JL (2021) The protein data bank archive. Methods Mol Biol 2305:3–21. https://doi.org/10.1007/978-1-0716-1406-8_1

    Article  CAS  PubMed  Google Scholar 

  40. Mortuza SM, Zheng W, Zhang C, Li Y, Pearce R, Zhang Y (2021) Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Nat Commun 12:1–12. https://doi.org/10.1038/s41467-021-25316-w

    Article  CAS  Google Scholar 

  41. Nooranian S, Kazemi Oskuee R, Jalili A (2022) Characterization and evaluation of cell-penetrating activity of brevinin-2R: an amphibian skin antimicrobial peptide. Mol Biotechnol 11:1–14. https://doi.org/10.1007/s12033-021-00433-5

    Article  CAS  Google Scholar 

  42. Huang CC, Meng EC, Morris JH, Pettersen EF, Ferrin TE (2014) Enhancing UCSF Chimera through web services. Nucleic Acids Res 42:W478–W484. https://doi.org/10.1093/nar/gku377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242. https://doi.org/10.1093/nar/gkl190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y (2020) CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin 41:138–144. https://doi.org/10.1038/s41401-019-0228-6

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen NT, Nguyen TH, Pham TN, Huy NT, Bay MV, Pham MQ, Nam PC, Vu VV, Ngo ST (2020) Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. J Chem Inf Model 60:204–211. https://doi.org/10.1021/acs.jcim.9b00778

    Article  CAS  PubMed  Google Scholar 

  47. Joseph RM (2014) Neuronatin gene: Imprinted and misfolded: Studies in Lafora disease, diabetes and cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss. Genomics 103:183–188. https://doi.org/10.1016/j.ygeno.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  48. Millership SJ, Tunster SJ, Van de Pette M, Choudhury AI, Irvine EE, Christian M, Fisher AG, John RM, Scott J, Withers DJ (2018) Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol Metab 18:97–106. https://doi.org/10.1016/j.molmet.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Somepalli G, Sahoo S, Singh A, Hannenhalli S (2021) Prioritizing and characterizing functionally relevant genes across human tissues. PLoS Comput Biol 17(7):e1009194. https://doi.org/10.1371/journal.pcbi.1009194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Millership SJ, Xavier GD, Choudhury AI, Bertazzo S, Chabosseau P, Pedroni SM, Irvine EE, Montoya A, Faull P, Taylor WR, Kerr-Conte J (2018) Neuronatin regulates pancreatic β cell insulin content and secretion. J Cin Invest 128:3369–3381. https://doi.org/10.1172/JCI120115

    Article  Google Scholar 

  51. Guo X, Song Y, Liu S, Gao M, Qi Y, Shang X (2021) Linking genotype to phenotype in multi-omics data of small sample. BMC Genom 22:1–11. https://doi.org/10.1186/s12864-021-07867-w

    Article  CAS  Google Scholar 

  52. Sud A, Kinnersley B, Houlston RS (2017) Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer 17:692–704. https://doi.org/10.1038/nrc.2017.82

    Article  CAS  PubMed  Google Scholar 

  53. Studer RA, Dessailly BH, Orengo CA (2013) Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem J 449:581–594. https://doi.org/10.1042/BJ20121221

    Article  CAS  PubMed  Google Scholar 

  54. Ancien F, Pucci F, Godfroid M, Rooman M (2018) Prediction and interpretation of deleterious coding variants in terms of protein structural stability. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22531-2

    Article  CAS  Google Scholar 

  55. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20:4331. https://doi.org/10.3390/ijms20184331

    Article  CAS  PubMed Central  Google Scholar 

  56. Gupta SK, Shah JC, Hwang SS (1999) Pharmacokinetic and pharmacodynamic characterization of OROS and immediate-release amitriptyline. Br J Clin Pharmacol 48:71–78. https://doi.org/10.1046/j.1365-2125.1999.00973.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Souery D, Serretti A, Calati R, Oswald P, Massat I, Konstantinidis A, Linotte S, Kasper S, Montgomery S, Zohar J, Mendlewicz J (2011) Citalopram versus desipramine in treatment resistant depression: effect of continuation or switching strategies. A randomized open study. World J Biol Psychiatry 12:364–375. https://doi.org/10.3109/15622975.2011.590225

    Article  PubMed  Google Scholar 

  58. San L, Arranz B (2006) Mirtazapine: only for depression? Acta Neuropsychiatr 18:130–143. https://doi.org/10.1111/j.1601-5215.2006.00143.x

    Article  PubMed  Google Scholar 

  59. Sangkuhl K, Klein TE, Altman RB (2011) PharmGKB summary: citalopram pharmacokinetics pathway. Pharmacogenet Genom 21:769–772. https://doi.org/10.1097/FPC.0b013e328346063f

    Article  CAS  Google Scholar 

  60. Sommi RW, Crismon ML, Bowden CL (1987) Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacotherapy 7:1–15. https://doi.org/10.1002/j.1875-9114.1987.tb03496.x

    Article  CAS  PubMed  Google Scholar 

  61. Azmi MB, Sultana S, Naeem S, Qureshi SA (2021) In silico investigation on alkaloids of Rauwolfia serpentina as potential inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase. Saudi J Biol Sci 28:731–737. https://doi.org/10.1016/j.sjbs.2020.10.066

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MBA, UN, SAQ and MKA: conceived the study. UN, AS, AJ and HU: performed the literature search. UN, AS, AJ, HU and MBA: analyzed data. All authors contributed to interpretation of data, as well as drafting and approval of the manuscript.

Corresponding author

Correspondence to Muhammad Bilal Azmi.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmi, M.B., Naeem, U., Saleem, A. et al. In silico identification of the rare-coding pathogenic mutations and structural modeling of human NNAT gene associated with anorexia nervosa. Eat Weight Disord 27, 2725–2744 (2022). https://doi.org/10.1007/s40519-022-01422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40519-022-01422-6

Keywords

Navigation