Skip to main content

Advertisement

Log in

Adsorption and Biomass: Current Interconnections and Future Challenges

  • Biomass and Biofuels (P Fokaides, Section Editor)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The present study focuses on investigating the interconnections between adsorption technology and biomass energy production processes. A critical review on the different roles and perspectives of adsorption in these processes and on the potential of biochar as a solid bio-sorbent is investigated.

Recent Findings

Adsorption plays a role in CO2 capture as a purification final step and can be viable for capture at low to medium scale. Promising materials and processes are proposed in the literature. Biochar produced from biomass pyrolysis shows properties comparable with commercialized adsorbents.

Summary

Adsorption in biomass associated with carbon capture and storage (Bio-CCS) is expected to grow if new adsorbents and processes are performant at larger scale. New biomass-based processes involving adsorption can be developed; methanation coupled with methanization is one of them. Biochar is technologically ready for water depollution and soil amendment but further work is needed for CO2 capture applications. These challenges will necessitate adapted policies and R&D to decrease the production costs. Industrial exploitation of biomass necessitates interdisciplinary work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • IPCC (Intergovernmental Panel on Climate Change) (2014), Climate Change 2014, Fifth Assessment Report (AR5), Cambridge University Press, Cambridge. IPCC plays a major role as its predictions and recommendation are the starting point of most policies, reflections, etc.

  2. • Fuss S, Canadell JG, Peter GP, Tavoni M, Andrew RM, Ciais P, et al. Betting on negative emissions. Nature Climate Change. 2014;4:850–3. https://doi.org/10.1038/nclimate2392 A critical paper on climate change mitigation by negative emissions.

    Article  Google Scholar 

  3. •• Kemper J. Biomass and carbon dioxide capture and storage: a review. Int J Greenhouse Gas Control. 2015;40:401–30. https://doi.org/10.1016/j.ijggc.2015.06.012 An extensive review on the global status of bio-CCS except the technical part. An inventory and description of worldwide bio-CSS projects. Complementary with the present review.

    Article  Google Scholar 

  4. ZEP and EBTP, 2012. Biomass with CO2 capture and storage (bio-CCS). The way forward for Europe. Zero emissions platform and European biofuels technology platform.

  5. United Nations. Paris Agreement. Paris: United Nations; 2016. p. 1–27.

    Google Scholar 

  6. Mendiara T, Gayan P, Garcia-Labiano F, de Diego LF, Perez-Astray A, Izquierdo MT, et al. Chemical looping combustion of biomass: an approach to BECCS. Energy Procedia. 2017;114:6021–9. https://doi.org/10.1016/j.egypro.2017.03.1737.

    Article  Google Scholar 

  7. Bui M, Fajardy M, Mac DN. Bio-energy with carbon capture and storage (BECCS): opportunities for performance improvement. Fuel. 2018;213:164–75. https://doi.org/10.1016/j.fuel.2017.10.100.

    Article  Google Scholar 

  8. •• Broutin P, Lebas E, Lecomte F. CO2 capture technologies to reduce greenhouse gas emissions. IFP Publications, 2010, ISBN : 9782710809487. A thorough book on CCS technologies and associated costs.

  9. McLaren D. Procedural justice in carbon capture and storage. Energy Environ. 2012;23(2–3):345–64. https://doi.org/10.1260/0958-305X.23.2-3.345.

    Article  Google Scholar 

  10. Nanda S, Mohanty P, Kozinski JA, Dalai AK. Physico-chemical properties of bio-oils from pyrolysis of lignocellulosic biomass with high and slow heating rate. Energy Environ Res. 2014;4:21–32.

    Article  Google Scholar 

  11. Metz B, Davidson O, de Coninck D, Loos M, Meyer L. (Eds.) Cambridge University Press, UK. Intergovernmental Panel on Climate Chang (IPCC) 2005.

  12. ADEME Biotfuel Project http://www.ademe.fr/sites/default/files/assets/documents/biotfuel-2016.pdf; 2016.

  13. Bottoms RR. Process for Separating Acid Gases. 1933. US Patent n°18,958.

  14. Dicko M, Coquelet C, Jarne C, Northrop S, Richon D. Acid gases partial pressures above a 50 wt% aqueous methyldiethanolamine solution: experimental work and modeling. Fluid Phase Equilib. 2010;289(2):99–109. https://doi.org/10.1016/j.fluid.2009.11.012.

    Article  Google Scholar 

  15. Du Y, Yuan Y, Rochelle GT. Review : Volatility of amines for CO2 capture. Int J Greenhouse Gas Control. 2017;58:1–9. https://doi.org/10.1016/j.ijggc.2017.01.001.

    Article  Google Scholar 

  16. Budzianows WM. Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Global Warming. 2015;7:184. https://doi.org/10.1504/IJGW.2015.067749.

    Article  Google Scholar 

  17. Ruthven DM. Principles of adsorption and adsorption processes: John Wiley and Sons; 1984.

  18. Dicko M, Lamari F, Levesque D. Molecular simulation of the selective adsorption of CO2 in combustion effluents. Récents Progrès en Génie des Procédés, Ed. SFGP, Paris 2013; 104:1–8.

  19. Lee SY, Park SJ. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11. https://doi.org/10.1016/j.jiec.2014.09.001.

    Article  Google Scholar 

  20. Levesque D, Lamari F. Pore geometry and isosteric heat: an analysis of carbon dioxide adsorption on activated carbon. Mol Phys. 2009;107(4–6):591–7. https://doi.org/10.1080/00268970902905802.

    Article  Google Scholar 

  21. • Hinkov I, Darkrim Lamari F, Langlois P, Dicko M, Chilev C, Pentchev I. Carbon dioxide capture by adsorption (review). J Chem Technol Metall. 2016;51(6):609–26 An interesting review on adsorbents and processes on development.

    Google Scholar 

  22. Yoro KO, Sekoai PT. The potential of CO2 capture and storage technology in South Africa’s coal-fired thermal power plants. Environments. 2016;3(3):24. https://doi.org/10.3390/environments3030024.

    Article  Google Scholar 

  23. Ma J, Si C, Li Y, Li R. CO2 adsorption on zeolite X/activated carbon composites. Adsorption. 2012;18:503–10. https://doi.org/10.1007/s10450-012-9440-0.

    Article  Google Scholar 

  24. Weinberger BP, Darkrim Lamari F, Beyaz Kayiran S, Gicquel A, Levesque D. Molecular modeling of H2 purification on Na-LSX zeolite and experimental validation. AICHE J. 2005;51:142–8. https://doi.org/10.1002/aic.10306.

    Article  Google Scholar 

  25. Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, et al. CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol. 2004;35(1):31–6. https://doi.org/10.1016/S1383-5866(03)00113-8.

    Article  Google Scholar 

  26. Ben Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, et al. Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy. 2016;161:225–55. https://doi.org/10.1016/j.apenergy.2015.10.011.

    Article  Google Scholar 

  27. Li Y, Ruan G, Jalilov AS, Tarkunde YR, Fei TJM. Biochar as a renewable source for high-performance CO2 sorbent. Carbon. 2016;107:344–51. https://doi.org/10.1016/j.carbon.2016.06.010.

    Article  Google Scholar 

  28. Querejeta N, Plaza MG, Rubiera F, Pevida C, Avery T, Tennisson SR. Carbon monoliths in adsorption-based post-combustion CO2 capture. Energy Procedia. 2017;114:2341–52. https://doi.org/10.1016/j.egypro.2017.03.1366.

    Article  Google Scholar 

  29. Plaza MG, Gonzalez AS, Pis JJ, Rubioera F, Pevida C. Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Appl Energy. 2014;114:551–62. https://doi.org/10.1016/j.apenergy.2013.09.058.

    Article  Google Scholar 

  30. • Trickett CA, Helal A, Bassem AM, Yamani ZH, Cordova KE, Yaghi OM. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater. 2017;2:17045. https://doi.org/10.1038/natrevmats.2017.45 This publication identifies the specific structural and chemical properties of MOFs that have led to the highest capture capacities, the most efficient separations and regeneration processes, and the most effective catalytic conversions. Benchmark on MOFs.

    Article  Google Scholar 

  31. Adhikari AK, Lin KS. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, CO) by doping palladium-containing activated carbon. Chem Eng J. 2016;284:1348–60. https://doi.org/10.1016/j.cej.2015.09.086.

    Article  Google Scholar 

  32. Munusamy K, Sethia G, Patil DV, Somayajulu Rallapalli PB, Somani RS, Bajaj HC. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies. Chem Eng J. 2012;195-196:359–68. https://doi.org/10.1016/j.cej.2012.04.071.

    Article  Google Scholar 

  33. • Riboldi L, Bolland O. Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, Limits and Potentials. Energy Procedia. 2017;114:2390–400. https://doi.org/10.1016/j.egypro.2017.03.1385 A critical article covering post-combustion and pre-combustion cases.

    Article  Google Scholar 

  34. Ghougassian PG, Pena Lopez JA, Manousiouthakis VI, Smirniotis P. CO2 capturing from power plant flue gases: energetic comparison of amine absorption with MgO based, heat integrated, pressure–temperature-swing adsorption. Int J Greenhouse Gas Control. 2014;22:256–71. https://doi.org/10.1016/j.ijggc.2013.12.004.

    Article  Google Scholar 

  35. An H, Feng B, Sub S. CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. Int J Greenhouse Gas Control. 2011;5:16–25. https://doi.org/10.1016/j.ijggc.2010.03.007.

    Article  Google Scholar 

  36. Grande CA, Rodrigues AE. Electric swing adsorption for CO2 removal from flue gases. Int J Greenhouse Gas Control. 2008;2:194–202. https://doi.org/10.1016/S1750-5836(07)00116-8.

    Article  Google Scholar 

  37. Lee KB, Sircar S. Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process. AICHE J. 2008;54:2293–302. https://doi.org/10.1002/aic.11531.

    Article  Google Scholar 

  38. Global CCS Institute, Electric Power Research Institute. CO2 capture technologies: Oxy-combustion with CO2 capture. Section 4. Report. 2012.

  39. Nuon Magnum project : https://www.power-technology.com/projects/nuonmagnum-igcc/. Development of a multi-fuel power plant based on coal gasification technology including CO2 capture from physical solvent since it is expected to be the most effective technology.

  40. Biomass feedstock for IGCC systems Francesco Fantozzi and Pietro Bartocci University of Perugia, Perugia, Italy https://doi.org/10.1016/B978-0-08-100167-7.00004-4 in Integrated Gasification Combined Cycle (IGCC) Technologies 2017, Pages 145–180.

    Chapter  Google Scholar 

  41. Karg J. Is IGCC a viable option for biomass? Workshop IEA Bioenergy Task 33, Lucerne, 26 October2016 www.ieatask33.org/app/webroot/files/file/2016/IGCC.pdf

  42. Oreggioni GB, Brandani S, Luberti M, Baykan Y, Friedrich D, Ahn H. CO2 capture from syngas by an adsorption process at a biomass gasification CHP plant: its comparison with amine-based CO2 capture. Int J Greenhouse Gas Control. 2015;35:71–81. https://doi.org/10.1016/j.ijggc.2015.01.008.

    Article  Google Scholar 

  43. •• Oreggioni GB, Friedrich D, Brandani S, Ahn H. Techno-economic study of adsorption processes for pre-combustion carbon capture at a biomass CHP plant. Energy Procedia. 2014;63:6738–44. https://doi.org/10.1016/j.egypro.2014.11.709 An interesting publication demonstrating the possibility to use adsorption at low to medium scales.

    Article  Google Scholar 

  44. Grande CA, Blom R, Andreassen KA, Stensrød RE. Experimental results of pressure swing adsorption (PSA) for pre-combustion CO2 capture with metal organic frameworks. Energy Procedia. 2017;114:2265–70. https://doi.org/10.1016/j.egypro.2017.03.1364.

    Article  Google Scholar 

  45. Giroudière F, Ambrosino JL, Fischer B, Pavone D, Sanz-Garcia E, Le Gall A, Soutif E, Vleeming H. HyGenSys: a flexible process for hydrogen and power production with reduction of CO2 Emission Oil & Gas Science and Technology—Rev. IFP Energies Nouvelles 2010;65(5):673–688. DOI:https://doi.org/10.2516/ogst/2009083

    Article  Google Scholar 

  46. Rönsch S, Schneider S, Matthischke S, Schlüter M, Götz M, Lefebvre J, et al. Review on methanation—from fundamentals to current projects. Fuel. 2016;166:276–96.

    Article  Google Scholar 

  47. • Jupiter 1000 project : https://www.jupiter1000.eu/english. 2017. Jupiter 1000 is the first industrial demonstrator of power to gas with a power rating of 1 MWe for electrolysis and a methanation process with carbon capture in France. It aims to convert renewable power surplus into green hydrogen and syngas for storage and propositions of technico/economic standards are expected by the consortium.

  48. • Jeguirim M, Limousy L. Biomass chars: elaboration, characterization and applications. Energies. 2017;10(12):2040. https://doi.org/10.3390/en10122040 An overview for biochar production methods, characterization techniques, and applications. It aims at demonstrating the diversity of research on biochars.

    Article  Google Scholar 

  49. Renner R. Rethinking biochar. Environ Sci Technol. 2007;41:5932–3. https://doi.org/10.1021/es0726097.

    Article  Google Scholar 

  50. Roddy DJ and Manson-Whitton C. Biomass gasification and pyrolysis. Module in Earth Systems and Environmental Sciences Comprehensive Renewable Energy. 2012;5133–153.

  51. Purakayastha TJ, Kumari S, Pathak H. Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma. 2015;239-240:293–303. https://doi.org/10.1016/j.geoderma.2014.11.009.

    Article  Google Scholar 

  52. Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv Agron. 2010;105:Chapter two. https://doi.org/10.1016/S0065-2113(10)05002-9.

    Article  Google Scholar 

  53. Jimenez-Cordero D, Heras F, Alonso-Morales N, Gilarranz MA, Rodriguez JJ. Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds. Biomass Bioenergy. 2013;54:123–32. https://doi.org/10.1016/j.biombioe.2013.03.020.

    Article  Google Scholar 

  54. Guizani C, Haddad K, Limousy L, Jeguirim M. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon. 2017;119:519–21. https://doi.org/10.1016/j.carbon.2017.04.078.

    Article  Google Scholar 

  55. Yuan H, Lu T, Huang H, Zhao D, Kobayashi N, Chen Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrolysis. 2015;112:284–9. https://doi.org/10.1016/j.jaap.2015.01.010.

    Article  Google Scholar 

  56. Ghani WAWAK, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, Rashid U, et al. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind Crop Prod. 2013;44:18–24. https://doi.org/10.1016/j.indcrop.2012.10.017.

    Article  Google Scholar 

  57. Qambrani NA, Rahman MM, Won S, Shim S, Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sust Energ Rev. 2017;79:255–73. https://doi.org/10.1016/j.rser.2017.05.057.

    Article  Google Scholar 

  58. Ahmad M, Rajapaksha AA, Lim JE, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071.

    Article  Google Scholar 

  59. Case SDC, McNamara NP, Reay DS, Whitaker J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of soil aeration. Soil Biol Biochem. 2012;51:125–34. https://doi.org/10.1016/j.soilbio.2012.03.017.

    Article  Google Scholar 

  60. Lian F, Sun B, Song Z, Zhu L, Qi X, Xing B. Physiochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem Eng J. 2014;248:128–34. https://doi.org/10.1016/j.cej.2014.03.021.

    Article  Google Scholar 

  61. Mohd A, Ghani WA, Resitanim NZ, Sanyang L. A review: carbon dioxide capture: biomass-derived-biochar and its applications. J Dispers Sci Technol. 2013;34:974–84. https://doi.org/10.1080/01932691.2012.704753.

    Article  Google Scholar 

  62. Ibarrola R, Shackley S, Hammond J. Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Manag. 2012;32:859–68. https://doi.org/10.1016/j.wasman.2011.10.005.

    Article  Google Scholar 

  63. Nasri NS, Hamza UD, Ismail SN, Ahmed MM, Mohsin R. Assessment of porous carbons derives from sustainable palm solid waste for carbon dioxide capture. J Clean Prod. 2014;71:148–57. https://doi.org/10.1016/j.jclepro.2013.11.053.

    Article  Google Scholar 

  64. Yang K, Yang J, Jiang Y, Wu W, Lin D. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environ Pollut. 2016;210:57–64. https://doi.org/10.1016/j.envpol.2017.10.035.

    Article  Google Scholar 

  65. Bamdad H, Hawboldt K, MacQuarrie S. A review on common adsorbents for acid gases removal: focus on biochar. Renew Sust Energ Rev. 2018;81:1705–20. https://doi.org/10.1016/j.rser.2017.05.261.

    Article  Google Scholar 

  66. Sadasivam BY, Reddy KR. Adsorption and transport of methane in biochars derived from waste. Wood. Waste Manag. 2015;43:218–29. https://doi.org/10.1016/j.wasman.2015.04.025.

    Article  Google Scholar 

  67. Zhang X, Gao B, Zheng Y, Hu X, Creamer AE, Annable MD, et al. Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms. Bioresour Technol. 2017;245:606–14. https://doi.org/10.1016/j.biortech.2017.09.025.

    Article  Google Scholar 

  68. Zhang X, Gao B, Creamer AE, Cao C, Li Y. Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater. 2017;338:102–23. https://doi.org/10.1016/j.jhazmat.2017.05.013.

    Article  Google Scholar 

  69. Klasson KT, Uchimiya M, Lima IM. Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption. Ind Crop Prod. 2015;67:33–40. https://doi.org/10.1016/j.indcrop.2015.01.010.

    Article  Google Scholar 

  70. Zhou L, Richard C, Ferronato C, Chovelon JM, Sleiman M. Investigating the performance of biomass-derived biochars for the removal of gaseous ozone, adsorbed nitrate and aqueous bisphenol A. Chem Eng J. 2018;334:2098–104. https://doi.org/10.1016/j.cej.2017.11.145.

    Article  Google Scholar 

  71. Lu F, Lu P. Experiment study on adsorption characteristics of SO2, NOx by biomass chars. 2010 Int. Conf. Digital Manufacturing & Automation. DOI:https://doi.org/10.1109/ICDMA.2010.322

  72. Lee JY, Park SH, Jeon JK, Yoo KS, Kim SS, Park YK. The removal of low concentration formaldehyde over sewage sludge char treated using various methods. Korean J Chem Eng. 2011;28(7):1556–60. https://doi.org/10.1007/s11814-011-0007-7.

    Article  Google Scholar 

  73. Wang X, Sato T, Xing B. Competitive sorption of pyrene on wood chars. Environ Sci Technol. 2006;40:3267–72. https://doi.org/10.1021/es0521977.

    Article  Google Scholar 

  74. Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hua XJ, et al. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol. 2017;227:359–72. https://doi.org/10.1016/j.biortech.2016.12.083.

    Article  Google Scholar 

  75. Conte P, Hanke UM, Marsala V, Cimò G, Alonzo G, Glaser B. Mechanisms of water interaction with pore systems of hydrochar and pyrochar from poplar forestry waste. J Agric Food Chem. 2014;62:4917–23. https://doi.org/10.1021/jf5010034.

    Article  Google Scholar 

  76. Cederlund H, Börjesson E, Lundberg D, Stenström J. Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron. Water Air Soil Pollut. 2016;227:203. https://doi.org/10.1007/s11270-016-2894-z.

    Article  Google Scholar 

  77. Zhang P, Sun H, Yu L, Sun T. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater. 2013;244–245:217–24. https://doi.org/10.1016/j.jhazmat.2012.11.046.

    Article  Google Scholar 

  78. Larous S, Meniai AH. Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int J hydrogen energ. 2016;4:10380–90. https://doi.org/10.1016/j.ijhydene.2016.01.096.

    Article  Google Scholar 

  79. O’Connor D, Peng T, Zhang J, Tsang DCW, Alessi DS, Shen Z, et al. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ. 2018;619–620:815–26. https://doi.org/10.1016/j.scitotenv.2017.11.132.

    Article  Google Scholar 

  80. Liu N, Zhou C, Fu S, Ashraf MI, Zhao E, Shi H, et al. Study on characteristics of ammonium nitrogen adsorption by biochar prepared in different temperature. Adv Mater Res. 2013;724-725:452–6. https://doi.org/10.4028/www.scientific.net/AMR.724-725.452.

    Article  Google Scholar 

  81. Li G, Shen B, Li Y, Zhao B, Wang F, He C, et al. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater. 2015;298:162–9. https://doi.org/10.1016/j.jhazmat.2015.05.031.

    Article  Google Scholar 

  82. Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. Biochar modification to enhance sorption of inorganics from water. Bioresour Technol. 2017;246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082.

    Article  Google Scholar 

  83. Zhang C, Shan B, Tang W, Zhu Y. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour Technol. 2017;238:352–60. https://doi.org/10.1016/j.biortech.2017.04.051.

    Article  Google Scholar 

  84. Tan C, Zeyu Z, Rong H, Ruihong M, Hongtao W, Wenjing L. Adsorption of cadmium by biochar derived from municipal sexage sludge: impact factors and adsorption mechanism. Chemosphere. 2015;134:286–93. https://doi.org/10.1016/j.chemosphere.2015.04.052.

    Article  Google Scholar 

  85. Ahmed MB, Zhou JL, Ngo HH, Guo W, Hasan Johir MA, Belhaj D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour Technol. 2017;238:306–12. https://doi.org/10.1016/j.biortech.2017.04.042.

    Article  Google Scholar 

  86. Chen J, Zhang D, Zhang H, Ghosh S, Pan B. Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Sci Total Environ. 2017;579:598–605. https://doi.org/10.1016/j.scitotenv.2016.11.052.

    Article  Google Scholar 

  87. Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng. 2017;5:601–11. https://doi.org/10.1016/j.jece.2016.12.019.

    Article  Google Scholar 

  88. Rebitanim NZ, Ghani WAK, Rebitanim NA, Mohd Salleh MA. Potential applications of wastes from energy generation particularly biochar in Malaysia. Renew Sust Energ Rev. 2013;21:694–702. https://doi.org/10.1016/j.rser.2012.12.051.

    Article  Google Scholar 

  89. Haddad K, Jellali S, Jeguirim M, Ben Hassen Trabelsi A, Limousy L. Research article: investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. J Environ Manag. 2018;216:305–14. https://doi.org/10.1016/j.jenvman.2017.06.020.

    Article  Google Scholar 

  90. Cukierman AL, Bonelli PR. Potentialities of biochars from different biomasses for climate change abatement by carbon capture and soil amelioration. Adv Environ Res 2015; 9(4):44:57–80.

  91. Tayade PR, Sapkal VS, Sapkal RS, Deshmukh SK, Rode CV, Shinde VM, Kanade GS. A method to minimize the global warming and environmental pollution. J Environ Sci Eng 2012;54(2):287–293.

  92. Xu X, Kan Y, Zhao L, Cao X. Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ Pollut. 2016;213:533–40. https://doi.org/10.1016/j.envpol.2016.03.013.

    Article  Google Scholar 

  93. Schimmelpfennig S, Müller C, Grünhage L, Koch C, Kammann C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—effects on greenhouse gas emissions and plant growth. Agric Ecosyst Plant Growth. 2014;191:39–52. https://doi.org/10.1016/j.agee.2014.03.027.

    Article  Google Scholar 

  94. Shahkarami S, Azargohar R, Dalai AK, Soltan J. Breakthrough CO2 adsorption in bio-based activated carbons. J Environ Sci. 2015;34:68–76. https://doi.org/10.1016/j.jes.2015.03.008.

    Article  Google Scholar 

  95. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, et al. Production and utilization of biochar: a review. J Ind Eng Chem. 2016;40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002.

    Article  Google Scholar 

  96. Chu G, Zhao J, Huang Y, Zhou D, Liu Y, Wu M, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ Pollut. 2018;240:1–9. https://doi.org/10.1016/j.envpol.2018.04.003.

    Article  Google Scholar 

  97. Creamer AE, Gao B, Zhang M. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J. 2014;249:174–9. https://doi.org/10.1016/j.cej.2014.03.105.

    Article  Google Scholar 

  98. Zhang X, Zhang S, Yang H, Feng Y, Chen Y, Wang X, et al. Nitrogen enriched biochar modified by high temperature CO2-ammonia treatment: characterization and adsorption of CO2. Chem Eng J. 2014;257:20–7. https://doi.org/10.1016/j.cej.2014.07.024.

    Article  Google Scholar 

  99. Nguyen MV, Lee BK. A novel removal of CO2 using nitrogen doped biochar beads as a green adsorbent. Process Saf Environ Prot. 2016;104:490–8. https://doi.org/10.1016/j.psep.2016.04.007.

    Article  Google Scholar 

  100. Zhang X, Zhang S, Yang H, Shao J, Chen Y, Feng Y, et al. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy. 2015;91:903–10. https://doi.org/10.1016/j.energy.2015.08.028.

    Article  Google Scholar 

  101. Wu H, Feng Q. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride. J Environ Sci. 2017;4:346–57. https://doi.org/10.1016/j.jes.2016.11.017.

    Article  Google Scholar 

  102. Creamer AE, Gao B, Wang S. Carbon dioxide capture using various metal oxhyhydroxide-biochar composites. Chem Eng J. 2016;283:826–32. https://doi.org/10.1016/j.cej.2015.08.037.

    Article  Google Scholar 

  103. Sadasivam BY, Reddy KR. Adsorption and transport of methane in biochars derived from waste wood. Waste Manag. 2015;43:218–29. https://doi.org/10.1016/j.wasman.2015.04.025.

    Article  Google Scholar 

  104. Bader N, Ouederni A. Optimization of biomass-based carbon materials for hydrogen storage. J Energy Storage. 2016;5:77–84. https://doi.org/10.1016/j.est.2015.12.009.

    Article  Google Scholar 

  105. Gurudayal BJ, Srankó DF, Towle CM, Lum Y, Hettick M, Scott MC, et al. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy Environ Sci. 2017;10:2222–30. https://doi.org/10.1039/c7ee01764b.

    Article  Google Scholar 

  106. • Dowd AM, Rodriguez M, Jeanneret T. Social science insights for the BioCCS industry. Energies. 2015;8(5):4024–42. https://doi.org/10.3390/en8054024 A rare study on bio-CSS acceptance in the literature.

    Article  Google Scholar 

  107. Feenstra CFJ, Mikunda T, Brunsting S. What happened in Barendrecht? Case study on the planned onshore carbon dioxide storage in Barendrecht, the Netherlands; Energy research Centre of the Netherlands (ECN): Petten, The Netherlands, 2010;1–44.

  108. Selosse S, Maïzi N. Exploring the biomass carbon capture solution to climate policy: a water impact analysis with TIAM-FR. [Research Report] Working Paper 2016-01-19, Chaire Modélisation prospective au service du développement durable. 2016, pp.16 - Les Cahiers de la Chaire. <hal-01286589>.

  109. Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B, et al. Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang. 2016;6:42–50. https://doi.org/10.1038/NCLIMATE2870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dicko.

Ethics declarations

Conflict of Interest

M. Dicko, M. Guilmont, F. Lamari declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomass and Biofuels

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dicko, M., Guilmont, M. & Lamari, F. Adsorption and Biomass: Current Interconnections and Future Challenges. Curr Sustainable Renewable Energy Rep 5, 247–256 (2018). https://doi.org/10.1007/s40518-018-0116-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-018-0116-6

Keywords

Navigation