Skip to main content
Log in

CO2 Laser Sintering of TiO2 Nanoparticles Thin Films for Improved Transmittance

  • Research
  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Photothermal CO2 laser sintering of anatase titanium dioxide (TiO2) nanoparticles (NPs) is reported in this paper for depositing transparent TiO2 thin films on quartz substrates. Drops of TiO2 NPs suspension are spread on the substrates using a spin-coating technique to prepare wet TiO2 thin films of different thicknesses in a controlled manner. These wet films are subsequently heated with a CO2 laser (\(\lambda =10.6 \;\mu m\)) in two stages, corresponding to the drying process for evaporating the liquid of the nanoparticles suspension and the sintering process for bonding the nanoparticles to form a transparent TiO2 film. The microstructures of the spin-coated (wet), dried, and sintered TiO2 films have been studied using optical and scanning electron microscopy (SEM). The optical transmittance of the films is characterized by UV/Vis/NIR spectrophotometry and fourier-transform infrared (FTIR) spectroscopy. The transmittance of the sintered TiO2 films increased nearly linearly over the ultraviolet (UV) to visible (Vis) range of wavelengths and reached an average transmittance above \(\sim 92\%\) in a certain infrared (IR) range, e.g. at \(2500 \;nm\) wavelength, and their transparency is slightly affected by the film thickness. The X-ray diffraction (XRD) analysis revealed that the sintered TiO2 films are polycrystalline with an anatase crystal structure, without the appearance of any traces of the rutile phase of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data generated or analyzed during the preparation of this work are included in this article.

References

  1. Yan, Y., Warren, S.C., Fuller, P., Grzybowski, B.A.: Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotechnol. 11, 603–608 (2016). https://doi.org/10.1038/nnano.2016.39

    Article  Google Scholar 

  2. Castillo, O.E., Kumar, R., Kar, A.: Laser electrospray printing of nanoparticles on flexible and rigid substrates. J. Laser Appl. 31, 1–6 (2019). https://doi.org/10.2351/1.5079733

    Article  Google Scholar 

  3. Yang, H., Liu, W., Xu, C., Fan, D., Cao, Y., Xue, W.: Laser sintering of TiO2 films for flexible dye-sensitized solar cells. Appl. Sci. 9, 1–11 (2019). https://doi.org/10.3390/app9050823

    Article  Google Scholar 

  4. Fathi, H.P., Johnson, H., Ahmadi, Z., Roach, M., Shamsaei, N., Mahjouri, S.M.: Laser-assisted selective and localized surface transformation of titanium to anatase, rutile, and mixed phase nanostructures. J. Laser Appl. 33, 1–6 (2021). https://doi.org/10.2351/7.0000316

    Article  Google Scholar 

  5. Ming, L., Yang, H., Zhang, W., Zeng, X., Xiong, D., Xu, Z., Wang, H., Chen, W., Xu, X., Wang, M., Duan, J., Cheng, Y.-B., Zhang, J., Bao, Q., Wei, Z., Yang, S.: Selective laser sintering of TiO2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. J. Mater. Chem. A 2, 4566–4573 (2014). https://doi.org/10.1039/C3TA14210H

    Article  Google Scholar 

  6. Takikawa, H., Matsui, T., Sakakibara, T., Bendavid, A., Martin, P.J.: Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition. Thin Solid Films 348, 145–151 (1999). https://doi.org/10.1016/S0040-6090(99)00054-1

    Article  Google Scholar 

  7. Hanaor, D.A.H., Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011). https://doi.org/10.1007/s10853-010-5113-0

    Article  Google Scholar 

  8. Schade, L., Franzka, S., Hardt, S., Wiggers, H., Hartmann, N.: Sintering of thin titanium dioxide nanoparticle films via photothermal processing with ultraviolet continuous-wave lasers. Appl. Surf. Sci. 278, 336–340 (2013). https://doi.org/10.1016/j.apsusc.2012.11.077

    Article  Google Scholar 

  9. Li, T., Li, L., Wu. M.: Fabrication and characterization of TiO2 anti‐reflection coatings with gradient index. Micro & Nano Lett. 12, 849–853 (2017). https://doi.org/10.1049/mnl.2017.0408

  10. MirKazem, O., Malekmohammad, M., Zabolian, H.: Wide-angle broadband antireflection coatings based on boomerang-like alumina nanostructures in visible region. Sci. Rep. 12, 904 (2022). https://doi.org/10.1038/s41598-022-04928-2

    Article  Google Scholar 

  11. Euvananont, C., Junin, C., Inpor, K., Limthongkul, P., Thanachayanont, C.: TiO2 optical coating layers for self-cleaning applications. Ceram. Int. 34, 1067–1071 (2008). https://doi.org/10.1016/j.ceramint.2007.09.043

    Article  Google Scholar 

  12. Sarkın, A.S., Ekren, N., Saglam, S.: A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 199, 63–73 (2020). https://doi.org/10.1016/j.solener.2020.01.084

    Article  Google Scholar 

  13. Thongsuwan, W., Sroila, W., Kumpika, T., Kantarak, E., Singjai, P.: Antireflective, photocatalytic, and superhydrophilic coating prepared by facile sparking process for photovoltaic panels. Sci. Rep. 12, 1675 (2022). https://doi.org/10.1038/s41598-022-05733-7

    Article  Google Scholar 

  14. Syed, W.A., Rafiq, N., Ali, A., Din, R.U., Shah, W.H.: Multilayer AR coatings of TiO2/MgF2 for application in optoelectronic devices. Optik 136, 564–572 (2017). https://doi.org/10.1016/j.ijleo.2017.02.085

    Article  Google Scholar 

  15. Pratima, B.M., Subrahmanyam, A.: Protective coatings on copper using as-deposited sol-gel TiO2-SiO2 films. Materials Today: Proceedings 80, 1061–1065 (2023). https://doi.org/10.1016/j.matpr.2022.11.463

    Article  Google Scholar 

  16. Bougdid, Y., Maouli, I., Rahmouni, A., Mochizuki, K., Bennani, I., Halim, M., Sekkat, Z.: Systematic λ21 resolution achieved in nanofabrication by two photon-absorption induced polymerization. J. Micromech. Microeng. 29, 1–7 (2019). https://doi.org/10.1088/1361-6439/aafda0

    Article  Google Scholar 

  17. Bougdid, Y., Sekkat, Z.: Voxels optimization in 3D laser nanoprinting. Sci. Rep. 10, 1–8 (2020). https://doi.org/10.1038/s41598-020-67184-2

    Article  Google Scholar 

  18. Bougdid, Y., E.l., Idrissi, Y., Maouli, I., Sekkat Z.: Direct laser writing of submicrometric voxels in two-photon photopolymerization. Proc. of SPIE 11098, Molecular and Nano Machines II, 110980 (2019). https://doi.org/10.1117/12.2528439

  19. Moujdi, S., Bougdid, Y., Rahmouni, A., Mahfoud, T., Nesterenko, D., Halim, M., Sekkat, Z.: Azo-polymers for holographic recording: Photo-assisted holography and surface relief gratings. Proc. of SPIE 10944, Practical Holography XXXIII: Displays, Materials, and Applications, 1094403 (2019). https://doi.org/10.1117/12.2513416

  20. Castillo, O.E., Kumar, R., Kar, A.: Laser-induced subwavelength structures by microdroplet superlens. Opt. Express 27, 8130–8142 (2019). https://doi.org/10.1364/OE.27.008130

    Article  Google Scholar 

  21. Bougdid, Y., Chenard, F., Sugrim, J., Kumar, R., Kar, A.: CO2 laser-assisted sintering of TiO2 nanoparticles for transparent films. J. Laser App. 35, 1–11 (2022). https://doi.org/10.2351/7.0000821

    Article  Google Scholar 

  22. Chenard, F., Alvarez, O., Buff, A. K., Regmi, A. R., Bougdid, Y., Kar, A. Kumar, R.: 3D laser deposition of inorganic transparent materials for advanced optics. IEEE Re. Appl. Photon. Defense Conf. (RAPID), 1–2 (2022). https://doi.org/10.1109/RAPID54472.2022.9911264

  23. Sta, I., Jlassi, M., Hajji, M., Boujmil, M.F., Jerbi, R., Kandyla, M., Kompitsas, M., Ezzaouia, H.: Structural and optical properties of TiO2 thin films prepared by spin-coating. J. Sol gel Sci. Technol. 72, 421–427 (2014). https://doi.org/10.1007/s10971-014-3452-z

    Article  Google Scholar 

  24. Schade, L., Franzka, S., Thomas, M., Hagemann, U., Hartmann, N.: Resonant laser processing of nanoparticulate Au/TiO2 films on glass supports: Photothermal modification of a photocatalytic nanomaterial. Surf. Sci. 650, 57–63 (2016). https://doi.org/10.1016/j.susc.2016.01.006

    Article  Google Scholar 

  25. Radovic, M., Dubourg, G., Kojic, S., Dohcevic, M.Z., Stojadinovic, B., Bokorov, M., Crnojevic, B.V.: Laser sintering of screen-printed TiO2 nanoparticles for improvement of mechanical and electrical properties. Ceram. Int. 44, 10975–10983 (2018). https://doi.org/10.1016/j.ceramint.2018.03.181

    Article  Google Scholar 

  26. Bakri, A.S., Sahdan, M.Z., Adriyanto, F., Raship, N.A., Said, N.D.M., Abdullah, S.A., Rahim, M.S.: Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf. Proc. 1788, 030030 (2017). https://doi.org/10.1063/1.4968283

    Article  Google Scholar 

  27. Cheng, J., Kar, A.: Studies for laser densification of ceramic coating. Mater. Manuf. Process. 12, 487–503 (2007). https://doi.org/10.1080/10426919708935159

    Article  Google Scholar 

  28. Tyona, M.D.: A theoretical study on spin coating technique. Adv. Mater. Res. 2, 195–208 (2013). https://doi.org/10.12989/AMR.2013.2.4.195

  29. Bougdid, Y., Chenard, F., Sugrim, J., Kumar, R., Kar, A.: Transmittance of TiO2 nanoparticle-based films deposited by CO2 laser heating. Proc. SPIE 12412, Laser 3D Manufact. X, 1241209 (2023). https://doi.org/10.1117/12.2647981

  30. Sani, E., Dell’Oro, A.: Optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 37, 36–41 (2014). https://doi.org/10.1016/j.optmat.2014.04.035

    Article  Google Scholar 

  31. Incropera, F. P., De-Witt, D. P.: Fundamentals of heat and mass transfer, 2nd edition. United States: John Wiley and Sons Inc., New York, p. 203 (1985). Fundamentals of heat and mass transfer, 2nd edition (Book) | OSTI.GOV

  32. Prokhorov, A. M., Konov, V. I., Ursu, I., Mihailescu, I. N.: Laser heating of metals. English Edition, IOP Publishing, New York, p. 43 (1990). https://doi.org/10.1201/9781351073943

  33. Mufti, N., Laila, I. K. R., Hartatiek, Fuad, A.: The effect of TiO2 thin film thickness on self-cleaning glass properties. IOP Conf. Series: J. Phys.: Conf. Series. 853, 1–7 (2017). https://doi.org/10.1088/1742-6596/853/1/012035

  34. Flores, J. D., Eickelmann, S., Riegler. H.: Evaporation behavior of a thinning liquid film in a spin coating setup: Comparison between calculation and experiment. Eng. Rep. 3, 1–12 (2021). https://doi.org/10.1002/eng2.12390

  35. Dunbar, P., Birnie III.: Rational solvent selection strategies to combat striation formation during spin coating of thin films. J. Mater. Res. 16, 145–1154 (2001). https://doi.org/10.12989/amr.2013.2.4.195

  36. Abdellatif, S., Sharifi, P., Kirah, K., Ghannam, R., Khalil, A.S.G., Erni, D., Marlow, F.: Refractive index and scattering of porous TiO2 films. Microporous Mesoporous Mater. 264, 84–91 (2018). https://doi.org/10.1016/j.micromeso.2018.01.011

    Article  Google Scholar 

  37. Domtau, D. L., Simiyu, J., Ayieta, E. O., Muthoka, B., Mwabora, J. M.: Optical and electrical properties dependence on thickness of screen-printed TiO2 thin films. J. Mat. Phy. Chem. 4, 1–3 (2016). https://doi.org/10.12691/jmpc-4-1-1

  38. Mauchauffe, R., Kim, J., Kim, D.H., Lee, S., Kwon, M., Moon, S.Y.: UV-Shielding TiO2 thin film deposition on flexible and heat-labile substrate using an open-air hybrid CVD/Plasma method. Vacuum 192, 110424 (2021). https://doi.org/10.1016/j.vacuum.2021.110424

    Article  Google Scholar 

  39. Doubi, Y., Hartiti, B., Siadat, M., Nkuissi, H.J.T., Labrim, H., Fadili, S., et al.: The effect of experimental process on properties of pure TiO2 nanostructure for fast NO2 gas sensor. Appl. Phys. A 128, 463 (2022). https://doi.org/10.1007/s00339-022-05611-z

    Article  Google Scholar 

  40. Enas, M.A., Magdy, A.H.Z., Fatma, S.A., Abd Elhady, S.A., Samah, S.N.: Synthesis and swelling characterization of carboxymethyl cellulose -g- poly(acrylic acid- co –acrylamide) hydrogel and their application in agricultural field. Int. J. ChemTech Res. 9, 270–281 (2016)

  41. Ghadiry, M., Gholami, M., Lai, K., Ahmad, H., Chong, W.Y.: Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2. PLoS ONE 11, 1–14 (2016). https://doi.org/10.1371/journal.pone.0153949

    Article  Google Scholar 

  42. Sun, J., Xu, Z., Li, W., Shen, X.: Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement. Nanomaterials 7, 1–15 (2017). https://doi.org/10.3390/nano7050102

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the service provided by the Materials Characterization Facility (MCF) for the XRD characterization and SEM imaging, and the CREOL cleanroom for profilometer measurements at UCF. The authors also thank Gunjan Kulkarni for his assistance in experiments and FTIR measurements.

Funding

This work was supported by Naval Air Warfare Center Aircraft Division, IRflex Corporation under Contract No. N6893621C0039 and the Postdoctoral Scholar Program of UCF (P3 Program) under Contract No. 65019B31.

Author information

Authors and Affiliations

Authors

Contributions

Y. B., A. K., R. K., F. C., and C. J. S. designed and planned the experiments. A. K., R. K., F. C., and C. J. S. were responsible for project planning. Y. B. carried out the experiments, collected the data, and processed the images. Y. B., A. K., and R. K. analyzed the results, co-wrote, and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aravinda Kar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougdid, Y., Chenard, F., Sugrim, C.(. et al. CO2 Laser Sintering of TiO2 Nanoparticles Thin Films for Improved Transmittance. Lasers Manuf. Mater. Process. (2024). https://doi.org/10.1007/s40516-023-00241-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40516-023-00241-6

Keywords

Navigation