Skip to main content
Log in

Laser-Based Additive Manufacturing and Mechanical Surface Post-Processing: Comparison of Barrel Finishing, Shot and Ultrasonic Peening for Corrosion Resistance Improvement of Superalloy

  • Research
  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Nickel-based alloy test parts were manufactured using an industrial laser 3D printing system. The corrosion behavior of the laser powder bed fused (LPBF) Inconel 718 alloy parts are analyzed in as-built and mechanical surface post-processed conditions, i.e. after barrel finishing, shot peening, ultrasonic shot peening, and multi-pin ultrasonic impact treatment. The microstructural features are analyzed using the X-Ray diffraction (XRD) analysis and scanning electron microscopy (SEM) / energy dispersive spectroscopy (EDS) methods. The open circuit potential and linear/cyclic polarization were registered in a 3.5 wt.% NaCl solution. The surface roughness diminishment, defects elimination, residual pores’ closure, as well as the residual stress and structure-phase state changes were under special attention. The polarization resistance, corrosion current density, corrosion rate, pitting initiation rate, anodic dissolution, ability for repassivation, and crevice corrosion resistance were assessed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The dataset generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Osoba, L.O., Oladoye, A.M., Ogbonna, V.E.: Corrosion evaluation of superalloys Haynes and Inconel 718 in hydrochloric acid. J. Alloys Compd. 804, 376–384 (2019). https://doi.org/10.1016/j.jallcom.2019.06.196

    Article  Google Scholar 

  2. Frazier, W.E.: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  3. Wang, X., Gong, X., Chou, K.: Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc. of the Institution of Mechanical Engineers. Part B: J. Eng. Manuf. 231, 1890–1903 (2017). https://doi.org/10.1177/0954405415619883

    Article  Google Scholar 

  4. Karia, M.C., Popat, M.A., Sangani, K.B.: selective laser melting of inconel super alloy – A review. AIP Conference Proc. 1859, 020013–020020 (2017). https://doi.org/10.1063/1.4990166

  5. Witkin, D.B., Patel, D.N., Helvajian, H., Steffeney, L., Diaz, A.: Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life. J. Mater. Eng. Perform. 28, 681–692 (2019). https://doi.org/10.1007/s11665-018-3732-9

    Article  Google Scholar 

  6. Wang, Y., Shi, J., Lu, S., Wang, Y.: Selective laser melting of graphene-reinforced Inconel 718 superalloy: Evaluation of microstructure and tensile performance. Manuf. Sci. Eng. 139, 8683–8691 (2017). https://doi.org/10.1115/1.4034712

    Article  Google Scholar 

  7. Lesyk, D.A., Martinez, S., Dzhemelinskyi, V.V., Lamikiz, A.: Additive manufacturing of the superalloy turbine blades by selective laser melting: Surface quality, microstructure and porosity, NT 2020. Lect. Notes Netw. Syst. 128, 267–275 (2020). https://doi.org/10.1007/978-3-030-46817-0_30

    Article  Google Scholar 

  8. Kong, D., Ni, X., Dong, C., Zhang, L., Yao, J., Man, C., Wanga, L., Xiao, K., Li, X.: Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting. Constr. Build. Mater. 221, 720–729 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.132

    Article  Google Scholar 

  9. Cabrini, M., Lorenzi, S., Testa, C., Pastore, T., Brevi, F., Biamino, S., Fino, P., Manfredi, D., Marchese, G., Calignano, F., Scenini, F.: Evaluation of corrosion resistance of alloy 625 obtained by laser powder bed fusion. J. Electrochem. Soc. 166(11), C3399 (2019). https://doi.org/10.1149/2.0471911jes

    Article  Google Scholar 

  10. Trosch, T., Strobner, J., Volkl, R., Glatzel, U.: Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 164, 428–431 (2016). https://doi.org/10.1016/j.matlet.2015.10.136

    Article  Google Scholar 

  11. Basak, S., Sharma, S.K., Sahu, K.K., Gollapudi, S., Majumdar, J.D.: Surface modification of structural material for nuclear applications by electron beam melting: enhancement of microstructural and corrosion properties of Inconel 617. SN Appl. Sci. 1(7), 708 (2019). https://doi.org/10.1007/s42452-019-0744-5

    Article  Google Scholar 

  12. Wang, Z., Guana, K., Gaoa, M., Li, X., Chen, X., Zeng, X.: The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloy. Compd. 513, 518–523 (2012). https://doi.org/10.1016/j.jallcom.2011.10.107

    Article  Google Scholar 

  13. Mostafa, A., Rubio, I.P., Brailovski, V., Jahazi, M., Medraj, M.: Structure, texture and phases in 3D printed IN718 alloy subjected to homogenization and HIP treatments. Metals. 7, 196–219 (2017). https://doi.org/10.3390/met7060196

    Article  Google Scholar 

  14. Lesyk, D.A., Martinez, S., Mordyuk, B.N., Dzhemelinskyi, V.V., Lamikiz, A., Prokopenko, G.I.: Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf. Coat. Technol. 381, 125136 (2020). https://doi.org/10.1016/j.surfcoat.2019.125136

    Article  Google Scholar 

  15. Kuo, Y.L., Nagahari, T., Kakehi, K.: The effect of post-processes on the microstructure and creep properties of alloy718 built up by selective laser melting. Mater. 11, 996–1009 (2018). https://doi.org/10.3390/ma11060996

    Article  Google Scholar 

  16. Seede, R., Mostafa, A., Brailovski, V., Jahazi, M., Medraj, M.: Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: Structure, texture, and phases. Manuf. Mater. Process. 2, 30–51 (2018). https://doi.org/10.3390/jmmp2020030

    Article  Google Scholar 

  17. Thiede, T., Cabeza, S., Mishurova, T., Kromm, A., Bode, J., Haberland, C., Bruno, G.: Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length. Mater. Perform. Character. 7, 0119–0138 (2017). https://doi.org/10.1520/MPC20170119

    Article  Google Scholar 

  18. Sander, G., Tan, J., Balan, P., Gharbi, O., Feenstra, D.R., Singer, L., Thomas, S., Kelly, R.G., Scully, J.R., Birbilis, N.: Corrosion of additively manufactured alloys: A review. Corros. 74(12), 1318–1350 (2018). https://doi.org/10.5006/2926

    Article  Google Scholar 

  19. Dryepondt, S., Kirka, M.M., List III, F.A.: Oxidation behavior of Ni-based alloys fabricated by additive manufacturing. In: Paper presented at the CORROSION 2019, Nashville (2019) NACE-2019-13558. https://www.osti.gov/servlets/purl/1658013

  20. Guo, P., Lina, X., Li, J., Zhang, Y., Song, M., Huang, W.: Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections. Corros. Sci. 132, 79–89 (2018). https://doi.org/10.1016/j.corsci.2017.12.021

    Article  Google Scholar 

  21. Kong, D., Dong, C., Ni, X., Zhang, L., Man, C., Zhu, G., Yao, J., Yao, J., Wang, L., Cheng, X., Li, X.: Effect of TiC content on the mechanical and corrosion properties of Inconel 718 alloy fabricated by a high-throughput dual-feed laser metal deposition system. J. Alloys Compd. 803, 637–648 (2019). https://doi.org/10.1016/j.jallcom.2019.06.317

    Article  Google Scholar 

  22. Asala, G., Andersson, J., Ojo, O.A.: Hot corrosion behaviour of wire-arc additive manufactured Ni-based superalloy ATI 718Plus®. Corros. Sci. 158, 108086 (2019). https://doi.org/10.1016/j.corsci.2019.07.010

    Article  Google Scholar 

  23. Wang, Y., Chen, X.: Investigation on the microstructure and corrosion properties of Inconel 625 alloy fabricated by wire arc additive manufacturing. Mater. Res. Express. 6(10), 106568 (2019). https://doi.org/10.1088/2053-1591/ab39f6

    Article  MathSciNet  Google Scholar 

  24. Zhang, L.N., Ojo, O.A.: Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy. J. Alloys Compd. 829, 154455 (2020). https://doi.org/10.1016/j.jallcom.2020.154455

    Article  Google Scholar 

  25. Karimi, P., Sadeghi, E., Algardh, J., Harlin, P., Andersson, J.: Effect of build location on microstructural characteristics and corrosion behavior of EB-PBF built alloy 718. Int. J. Adv. Manuf. Technol. 106(7), 3597–3607 (2020). https://doi.org/10.1007/s00170-019-04859-9

    Article  Google Scholar 

  26. Klapper, H.S., Molodtsov, N., Burns, M., Wangenheim, C.: Critical factors affecting the pitting corrosion resistance of additively manufactured nickel alloy in chloride containing environments, Corros. 2017, paper no. 9345. NACE, Houston TX (2017)

    Google Scholar 

  27. Lefky, C.S., Gallmeyer, T.G., Moorthy, S., Stebner, A., Hildreth, O.J.: Microstructure and corrosion properties of sensitized laser powder bed fusion printed Inconel 718 to dissolve support structures in a self-terminating manner. Addit. Manuf. 27, 526–532 (2019). https://doi.org/10.1016/j.addma.2019.03.020

    Article  Google Scholar 

  28. Kong, D., Dong, C., Ni, X., Li, X.: Corrosion of metallic materials fabricated by selective laser melting. NPJ Mater. Degrad. 3, 24 (2019). https://doi.org/10.1038/s41529-019-0086-1

    Article  Google Scholar 

  29. Mythreyi, O.V., Raja, A., Nagesha, B.K., Jayaganthan, R.: Corrosion study of selective laser melted IN718 alloy upon post heat treatment and shot peening. Metals. 10(12), 1562 (2020). https://doi.org/10.3390/met10121562

    Article  Google Scholar 

  30. Tang, Y., Shen, X., Qiao, Y., Yang, L., Chen, J., Lu, D., Zhang, Z.: Corrosion behavior of a selective laser melted Inconel 718 alloy in a 3.5 wt.% NaCl solution. J. Mater. Eng. Perform. 30, 5506–5514 (2021). https://doi.org/10.1007/s11665-021-05909-8

    Article  Google Scholar 

  31. Juillet, C., Oudriss, A., Balmain, J., Feaugas, X., Pedraza, F.: Characterization and oxidation resistance of additive manufactured and forged IN718 Ni-based superalloys. Corros. Sci. 142, 266–276 (2018). https://doi.org/10.1016/j.corsci.2018.07.032

    Article  Google Scholar 

  32. Li, H., Feng, S., Li, J., Gong, J.: Effect of heat treatment on the δ phase distribution and corrosion resistance of selective laser melting manufactured Inconel 718 superalloy. Corros. Mater. 69(10), 1350–1354 (2018). https://doi.org/10.1002/maco.201810159

    Article  Google Scholar 

  33. Lesyk, D.A., Martinez, S., Pedash, O.O., Dzhemelinskyi, V.V., Lamikiz, A.: Porosity and surface defects characterization of hot isostatically pressed Inconel 718 alloy turbine blades printed by 3D laser metal fusion technology. MRS Adv. 7, 197–201 (2022). https://doi.org/10.1557/s43580-021-00187-x

    Article  Google Scholar 

  34. Maleki, E., Unal, O., Guagliano, M., Bagherifard, S.: The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718. Mater. Sci. Eng. A. 810, 141029 (2021). https://doi.org/10.1016/j.msea.2021.141029

    Article  Google Scholar 

  35. Lee, S., Shao, S., Wells, D.N., Zetek, M., Kepka, M., Shamsaei, N.: Fatigue behavior and modeling of additively manufactured IN718: The effect of surface treatments and surface measurement techniques. J. Mater. Process. Technol. 302, 117475 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117475

    Article  Google Scholar 

  36. Dehghanghadikolaei, A., Ibrahim, H., Amerinatanzi, A., Hashemi, M., Moghaddam, N.S., Elahinia, M.: Improving corrosion resistance of additively manufactured nickel–titanium biomedical devices by microarc oxidation process. J. Mater. Sci. 54(9), 7333–7355 (2019). https://doi.org/10.1007/s10853-019-03375-1

    Article  Google Scholar 

  37. Lesyk, D.A., Martinez, S., Pedash, O.O., Mordyuk, B.N., Dzhemelinskyi, V.V., Lamikiz, А.: Nickel superalloy turbine blade parts printed by laser powder bed fusion: Thermo-mechanical post-processing for enhanced surface integrity and precipitation strengthening. J. Mater. Eng. Perform. 31, 6283–6299 (2022). https://doi.org/10.1007/s11665-022-06710-x

    Article  Google Scholar 

  38. Lesyk, D.A., Martinez, S., Mordyuk, B.N., Pedash, O.O., Dzhemelinskyi, V.V., Lamikiz, А.: Ultrasonic surface post-processing of hot isostatic pressed and heat treated superalloy parts manufactured by laser powder bed fusion. Addit. Manuf. Lett. 3, 100063 (2022). https://doi.org/10.1016/j.addlet.2022.100063

    Article  Google Scholar 

  39. Sadeghi, M., Diaz, A., McFadden, P., Sadeghi, E.: Chemical and mechanical post-processing of Alloy 718 built via electron beam-powder bed fusion: Surface texture and corrosion behavior. Mater. Des. 214, 110405 (2022). https://doi.org/10.1016/j.matdes.2022.110405

    Article  Google Scholar 

  40. Raghavan, S., Zhang, B., Wang, P., Sun, C.N., Nai, M.L.S., Li, T., Wei, J.: Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted Inconel 718 alloy. Mater. Manuf. Process. 32, 1588–1595 (2017). https://doi.org/10.1080/10426914.2016.1257805

    Article  Google Scholar 

  41. Jinoop, A.N., Kanmani Subbu, S., Paul, C.P., Palani, I.A.: Post-processing of laser additive manufactured Inconel 718 using laser shock peening. Int. J. Precis. Eng. Manuf. 20, 1621–1628 (2019). https://doi.org/10.1007/s12541-019-00147-4

    Article  Google Scholar 

  42. Munther, M., Tajyar, A., Holtham, N., Hackel, L., Beheshti, A., Davami, K.: An investigation into the mechanistic origin of thermal stability in thermal-microstructural-engineered additively manufactured Inconel 718. Vacuum. 199, 110971 (2022). https://doi.org/10.1007/s12541-019-00147-4

    Article  Google Scholar 

  43. Kaynak, Y., Tascioglu, E.: Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Prog. Addit. Manuf. 5, 221–234 (2020). https://doi.org/10.1007/s40964-019-00099-1

    Article  Google Scholar 

  44. Boschetto, A., Bottini, L., Macera, L., Veniali, F.: Post-processing of complex SLM parts by barrel finishing. Appl. Sci. 10, 1382 (2020). https://doi.org/10.3390/app10041382

    Article  Google Scholar 

  45. Balbaa, M., Ghasemi, A., Fereiduni, E., Al-Rubaie, K., Elbestawi, M.: Improvement of fatigue performance of laser powder bed fusion fabricated IN625 and IN718 superalloys via shot peening. J. Mater. Process. Technol. 304, 117571 (2022). https://doi.org/10.1016/j.jmatprotec.2022.117571

    Article  Google Scholar 

  46. Lesyk, D.A., Dzhemelinskyi, V.V., Martinez, S., Grzesiak, D., Mordyuk, B.N.: Functional evaluation of surface texture in laser selective melted Inconel 718 alloy parts processed by shot peening, InterPartner 2022. Lect. Notes Mech. Eng. (2023) 294. –305. https://doi.org/10.1007/978-3-031-16651-8_28

  47. Zhang, B., Xiu, M., Tan, Y.T., Wei, J., Wang, P.: Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments. Appl. Surf. Sci. 490, 556–567 (2019). https://doi.org/10.1016/j.apsusc.2019.06.043

    Article  Google Scholar 

  48. Lesyk, D.A., Martinez, S., Dzhemelinskyi, V.V., Stamann, O., Mordyuk, B.N., Lamikiz, A.: Surface polishing of laser powder bed fused superalloy components by magnetic post-treatment. NAP. 2020, 02SAMA17-1–02SAMA17-4 (2020). https://doi.org/10.1109/NAP51477.2020.9309600

    Article  Google Scholar 

  49. Lesyk, D.A., Martinez, S., Pedash, O.O., Dzhemelinskyi, V.V., Mordyuk, B.N.: Combined thermo-mechanical techniques for post-processing of the SLM-printed Ni-Cr-Fe alloy parts, DSMIE 2020. Lect. Notes Mech. Eng. 295–304 (2020). https://doi.org/10.1007/978-3-030-50794-7_29

  50. Karthik, D., Swaroop, S.: Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy. J. Alloy. Compd. 694, 1309–1319 (2017). https://doi.org/10.1016/j.jallcom.2016.10.093

    Article  Google Scholar 

  51. Xing, X., Duan, X., Jiang, T., Wang, J., Jiang, F.: Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting. Metals. 9, 103–111 (2019). https://doi.org/10.3390/met9010103

    Article  Google Scholar 

  52. Lesyk, D.A., Martinez, S., Mordyuk, B.N., Dzhemelinskyi, V.V., Lamikiz, A.: Surface finishing of complexly shaped parts fabricated by selective laser melting, InterPartner-2019. Lect. Notes Mech. Eng. 186–195 (2020). https://doi.org/10.1007/978-3-030-40724-7_19

  53. Jiménez, A., Bidare, P., Hassanin, H., Tarlochan, F., Dimov, S., Essa, K.: Powder-based laser hybrid additive manufacturing of metals: a review. Int. J. Adv. Manuf. Technol. 114, 63–96 (2021). https://doi.org/10.1007/s00170-021-06855-4

    Article  Google Scholar 

  54. Wang, Y., Shi, J.: Microstructure and properties of Inconel 718 fabricated by directed energy deposition with in-situ ultrasonic impact peening. Metall. Mater. Trans. B. 50, 2815–2827 (2019). https://doi.org/10.1007/s11663-019-01672-3

    Article  Google Scholar 

  55. Wang, Y., Shi, J.: Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in-situ ultrasonic impact peening and heat treatment. Mater. Sci. Eng. A. 786, 139434 (2020). https://doi.org/10.1016/j.msea.2020.139434

    Article  Google Scholar 

  56. Sun, L., Huang, L., Wu, P., Huang, R., Fang, N., Xu, F., Xu, K.: Progress on the effect and mechanism of ultrasonic impact treatment on additive manufactured metal fabrications. Metall. Mater. Trans. B. 13, 995 (2023). https://doi.org/10.3390/cryst13070995

    Article  Google Scholar 

  57. Martinez, S., Ortega, N., Celentano, D., Egea, A.J.S., Ukar, E., Lamikiz, A.: Analysis of the Part distortions for Inconel 718 SLM: A case study on the NIST test artifact. Mater. 13, 5087 (2020). https://doi.org/10.3390/ma13225087

    Article  Google Scholar 

  58. Sendino, S., Gardon, M., Lartategui, F., Martinez, S., Lamikiz, A.: The effect of the laser incidence angle in the surface of L-PBF processed parts. Coat. 10, 1024 (2020). https://doi.org/10.3390/coatings10111024

    Article  Google Scholar 

  59. Lesyk, D.A., Dzhemelinskyi, V.V., Martinez, S., Mordyuk, B.N., Lamikiz, А.: Surface shot peening post-processing of Inconel 718 alloy parts printed by laser powder bed fusion additive manufacturing. J. Mater. Eng. Perform. 30, 6982–6995 (2021). https://doi.org/10.1007/s11665-021-06103-6

    Article  Google Scholar 

  60. Mordyuk, B.N., Prokopenko, G.I.: Ultrasonic impact treatment–An effective method for nanostructuring the surface layers in metallic materials, in: M. Aliofhazraei Ed. Handbook of Mechanical Nanostructuring. 417–434 (2015). https://doi.org/10.1002/9783527674947.ch17

  61. Lesyk, D.A., Martinez, S., Mordyuk, B.N., Dzhemelinskyi, V.V., Lamikiz, A., Prokopenko, G.I.: Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045. Optics Laser. Technol. 111, 424–438 (2019). https://doi.org/10.1016/j.optlastec.2018.09.030

    Article  Google Scholar 

  62. Evgeny, B., Hughes, T., Eskin, D.: Effect of surface roughness on corrosion behaviour of low carbon steel in inhibited 4 M hydrochloric acid under laminar and turbulent flow conditions. Corros. Sci. 103, 196–205 (2016). https://doi.org/10.1016/j.corsci.2015.11.019

  63. Grzesik, W.: Prediction of the functional performance of machined components based on surface topography: State of the art. J. Mater. Eng. Perform. 25, 4460–4468 (2016). https://doi.org/10.1007/s11665-016-2293-z

    Article  Google Scholar 

  64. To, D., Umezawa, O., Shinohara, T.: Detection of surface roughness evolution of carbon steel subjected to outdoor exposure and constant humidity corrosion tests. Mater. Trans. 59, 1239–1243 (2018). https://doi.org/10.2320/matertrans.MF201702

    Article  Google Scholar 

  65. Bergant, Z., Trdan, U., Grum, J.: Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros. Sci. 88, 372–386 (2014). https://doi.org/10.1016/j.corsci.2014.07.057

  66. Xia, D.-H., Deng, C.-M., Macdonald, D., Jamali, S., Mills, D., Luo, J.-L., Strebl, M.G., Amiri, M., Jin, W., Song, S., Hu, W.: Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review. J. Mater. Sci. Technol. 112, 151–183 (2022). https://doi.org/10.1016/j.jmst.2021.11.004

    Article  Google Scholar 

  67. Trdan, U., Grum, J.: Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods. Corrosion Sci. 59, 324–333 (2012). https://doi.org/10.1016/j.corsci.2012.03.019

    Article  Google Scholar 

  68. Trdan, U., Hočevar, M., Gregorcic, P.: Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corros. Sci. 123, 21–26 (2017). https://doi.org/10.1016/j.corsci.2017.04.005

    Article  Google Scholar 

  69. Lesyk, D.A., Mordyuk, B.N., Martinez, S., Iefimov, M.O., Dzhemelinskyi, V.V., Lamikiz, А.: Influence of combined laser heat treatment and ultrasonic impact treatment on microstructure and corrosion behavior of AISI 1045 steel. Surf. Coat. Technol. 401, 126275 (2020). https://doi.org/10.1016/j.surfcoat.2020.126275

    Article  Google Scholar 

  70. Ailor, W.H. (ed.): Handbook on Corrosion testing and evaluation, p. 174. John Wiley and Sons Inc., New York (1971)

    Google Scholar 

  71. Popova, K., Prošek, T.: Corrosion monitoring in atmospheric conditions: A review. Metals. 12, 171 (2022). https://doi.org/10.3390/met12020171

    Article  Google Scholar 

  72. Bagherifard, S., Hickey, D.J., Fintova, S., Pastorek, F., Fernandez-Pariente, I., Bandini, M., Webster, T.J., Guagliano, M.: Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Acta Biomater. 66, 93–108 (2018). https://doi.org/10.1016/j.actbio.2017.11.032

    Article  Google Scholar 

  73. Jáquez-Muñoz, J.M., Gaona-Tiburcio, C., Cabral-Miramontes, J., Nieves-Mendoza, D., Maldonado-Bandala, E., Olguín-Coca, J., López-Léon, L.D., los Rios, J.P.F.-D., Almeraya-Calderón, F.: Electrochemical noise analysis of the corrosion of titanium alloys in NaCl and H2SO4 solutions. Metals. 11, 105 (2021). https://doi.org/10.3390/met11010105

    Article  Google Scholar 

  74. Toda, H., Minami, K., Koyama, K., Ichitani, K., Kobayashi, M., Uesugi, K., Suzuki, Y.: Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation. Acta Mater. 57, 4391–4403 (2009). https://doi.org/10.1016/j.actamat.2009.06.012

    Article  Google Scholar 

  75. Dekhtyar, A.I., Mordyuk, B.N., Savvakin, D.G., Bondarchuk, V.I., Moiseeva, I.V., Khripta, N.I.: Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment. Mater. Sci. Eng. A. 641, 348–359 (2015). https://doi.org/10.1016/j.msea.2015.06.072

    Article  Google Scholar 

  76. Mordyuk, B.N., Prokopenko, G.I., Yu, P.V., L.E., Matokhnyuk, L.E., Byalonovich, A.V., Popova T.V.: Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with the electric discharge surface alloying. Mater. Sci. Eng. A 659, 119–129 (2016). https://doi.org/10.1016/j.msea.2016.02.036

  77. Yan, S., Wang, Y., Wang, Q., Zhang, C., Chen, D., Cui, G.: Enhancing mechanical properties of the spark plasma sintered Inconel 718 alloy by controlling the nano-scale precipitations. Mater. 12, 3336 (2019). https://doi.org/10.3390/ma12203336

    Article  Google Scholar 

  78. Lesyk, D.A., Martinez, S., Mordyuk, B.N., Pedash, O.O., Dzhemelinskyi, V.V., Lamikiz, А.: Comparison of effects of shot and ultrasonic peening treatments on surface properties of L-PBF-manufactured superalloy subjected to HIP combined with heat treatments. In: Post-processing techniques for additive manufacturing, pp. 207–243. Taylor & Francis (2023). https://doi.org/10.1201/9781003288619-9

    Book  Google Scholar 

  79. Pariona, M.M., Teleginski, V., Santos, K.D., Machado, S., Zara, A.J., Zurba, N.K., Riva, R.: Yb-fiber laser beam effects on the surface modification of Al–Fe aerospace alloy obtaining weld filet structures, low fine porosity and corrosion resistance. Surf. Coat. Technol. 206, 2293–2301 (2012). https://doi.org/10.1016/j.surfcoat.2011.10.007

    Article  Google Scholar 

  80. Trdan, U., Grum, J.: SEM/EDS characterization of laser shock peening effect on localized corrosion of Al alloy in a near natural chloride environment. Corros. Sci. 82, 328–338 (2014). https://doi.org/10.1016/j.corsci.2014.01.032

    Article  Google Scholar 

  81. Finšgar, M., Fassbender, S., Nicolini, F., Milošev, I.: Polyethyleneimine as a corrosion inhibitor for ASTM 420 stainless steel in near-neutral saline media. Corros. Sci. 51, 525–533 (2009). https://doi.org/10.1016/j.corsci.2008.12.006

    Article  Google Scholar 

  82. Trueba, M., Trasatti, S.P.: Study of Al alloy corrosion in neutral NaCl by the pitting scan technique. Mater. Chem. Phys. 121, 523–533 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank O. Stamann and S. Faust (Otto von Guericke University Magdeburg, Germany) for the support provided with the surface morphology and roughness measurements.

Funding

This work was supported by the National Research Foundation of Ukraine (NRFU) for the support of the Project within the NRFU Competition ‘Science for the Recovery of Ukraine in the War and Post-War Periods’ (Grant number 2022.01/0038). Mordyuk B.M. and Lesyk D.A. have received research support from NRFU. D.A. Lesyk is also grateful to the Ulam NAWA and ADAGIO Post-doctoral Fellowship Research Programs.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dmytro Lesyk, Bohdan Mordyuk, and Silvia Martinez. The first draft of the manuscript was written by Dmytro Lesyk and Bohdan Mordyuk and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to D. A. Lesyk or B. N. Mordyuk.

Ethics declarations

Ethical Approval

No ethical approval was required for this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesyk, D.A., Mordyuk, B.N., Martinez, S. et al. Laser-Based Additive Manufacturing and Mechanical Surface Post-Processing: Comparison of Barrel Finishing, Shot and Ultrasonic Peening for Corrosion Resistance Improvement of Superalloy. Lasers Manuf. Mater. Process. 10, 702–734 (2023). https://doi.org/10.1007/s40516-023-00231-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-023-00231-8

Keywords

Navigation