Skip to main content
Log in

Modeling of the Transient Temperature Field during Laser Heating

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Motivated by the need to determine the transient temperature field during laser heating, the heating process is modeled as a transient three-dimensional heat conduction problem in a finite slab subjected to a moving circular heat source on the upper surface to emulate the heat generated on the irradiated surface. The boundary value problem is formulated considering all slab surfaces are subjected to heat convection. A closed form solution of transient temperature field is obtained using Green’s function which constructed using separation of variables method. Experiments are performed using a continuous wave CO2 laser machine with maximum power of 150 W to verify the obtained results. Numerical calculations are performed for two different materials to figure out the effect of the material properties on the heating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tahir, A.F.M., Rashid, A.R., Sariff, N.E., Rahim, E.A.: CO2 laser cutting performance on ultra high strength steel (UHSS). Lasers. Manuf. Mater. Process. 7, 15–37 (2020)

    Article  Google Scholar 

  2. Muthuramalingam, T., Akash, R., Krishnan, S., Phan, N.H., Pi, V.N., Elsheikh, A.H.: Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process. J. Manuf. Process. 62, 1–6 (2021)

    Article  Google Scholar 

  3. Khoshaim, A.B., Elsheikh, A.H., Moustafa, E.B., Basha, M., Showaib, E.A.: Experimental investigation on laser cutting of PMMA sheets: effects of process factors on kerf characteristics. J. Mater. Res. Technol. 11, 235–246 (2021)

    Article  Google Scholar 

  4. Shen, H., Vollertsen, F.: Modelling of laser forming – an review. Comput. Mater. Sci. 46, 834–840 (2009)

    Article  Google Scholar 

  5. Yocom, C.J., Zhang, X., Liao, Y.: Research and development status of laser peen forming: a review. Opt. Laser Technol. 108, 32–45 (2018)

    Article  Google Scholar 

  6. Gisario, A., Barletta, M., Venettacci, S., Veniali, F.: Progress in tridimensional (3d) laser forming of stainless steel sheets. Lasers. Manuf. Mater. Process. 2, 148–163 (2015)

    Article  Google Scholar 

  7. Boonpuang, R., Mongkolwongroj, M., Sakulkalavek, A., Sakdanuphab, R.: Empirical modeling and optimization of laser bending process parameters using the central composite design method for HDD slider PSA/RSA adjustment. Lasers. Manuf. Mater. Process. 7, 290–304 (2020)

    Article  Google Scholar 

  8. Cheng, J., Lawrence Yao, Y.: Cooling effects in multiscan laser forming. J. Manuf. Process. 3, 60–72 (2001)

    Article  Google Scholar 

  9. Paramasivan, K., Das, S., Misra, D.: A study on the effect of rectangular cut out on laser forming of AISI 304 plates. Int. J. Adv. Manuf. Technol. 72, 1513–1525 (2014)

    Article  Google Scholar 

  10. Castillo, J.I., Celentano, D.J., Cruchaga, M.A., García-Herrera, C.M.: Characterization of strain rate effects in sheet laser forming. Comptes Rendus Mécanique. 346, 794–805 (2018)

    Article  Google Scholar 

  11. Elsheikh, A.H., Shehabeldeen, T.A., Zhou, J., Showaib, E., Abd Elaziz, M.: Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. J. Intell. Manuf. (2020)

  12. Elsheikh, A.H., Deng, W., Showaib, E.A.: Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigation and optimization. J. Mater. Res. Technol. 9, 1325–1339 (2020)

    Article  Google Scholar 

  13. Cheng, P.J., Lin, S.C.: Using neural networks to predict bending angle of sheet metal formed by laser. Int. J. Mach. Tools Manuf. 40, 1185–1197 (2000)

    Article  Google Scholar 

  14. V. Dragos, V. Dan, R. Kovacevic, Prediction of the laser sheet bending using neural network, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353), pp. 686–689 vol.683 (2000)

  15. Kotobi, M., Mansouri, H., Honarpisheh, M.: Investigation of laser bending parameters on the residual stress and bending angle of St-Ti bimetal using FEM and neural network. Opt. Laser Technol. 116, 265–275 (2019)

    Article  Google Scholar 

  16. Maji, K., Pratihar, D.K., Nath, A.K.: Laser forming of a dome shaped surface: experimental investigations, statistical analysis and neural network modeling. Opt. Lasers Eng. 53, 31–42 (2014)

    Article  Google Scholar 

  17. Abd Elaziz, M., Shehabeldeen, T.A., Elsheikh, A.H., Zhou, J., Ewees, A.A., Al-qaness, M.A.A.: Utilization of random vector functional link integrated with marine predators algorithm for tensile behavior prediction of dissimilar friction stir welded aluminum alloy joints. J. Mater. Res. Technol. 9, 11370–11381 (2020)

    Article  Google Scholar 

  18. Essa, F.A., Abd Elaziz, M., Elsheikh, A.H.: Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization. Process. Saf. Environ. Prot. 144, 322–329 (2020)

    Article  Google Scholar 

  19. Shehabeldeen, T.A., Elaziz, M.A., Elsheikh, A.H., Hassan, O.F., Yin, Y., Ji, X., Shen, X., Zhou, J.: A novel method for predicting tensile strength of friction stir welded AA6061 Aluminium alloy joints based on hybrid random vector functional link and Henry gas solubility optimization. IEEE Access. 8, 79896–79907 (2020)

    Article  Google Scholar 

  20. Babikir, H.A., Elaziz, M.A., Elsheikh, A.H., Showaib, E.A., Elhadary, M., Wu, D., Liu, Y.: Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alexandria Eng. J. 58, 1077–1087 (2019)

    Article  Google Scholar 

  21. Elsheikh, A.H., Abd Elaziz, M., Babikir, H.A., Wu, D., Liu, Y.: A new artificial neural network model integrated with a cat swarm optimization algorithm for predicting the emitted noise during axial piston pump operation. IOP Conference Ser: Mater. Sci. Eng. 973, (2020)

  22. Shah, S.M., Nélias, D., Coret, M.: Numerical simulation of grinding induced phase transformation and residual stresses in AISI-52100 steel. Finite Elem. Anal. Des. 61, 1–11 (2012)

    Article  Google Scholar 

  23. Na, X.-z., Xue, M., Zhang, X.-z., Gan, Y.: Numerical simulation of heat transfer and deformation of initial Shell in soft contact continuous casting Mold under high frequency electromagnetic field, journal of Iron and steel research. International. 14, 14–21 (2007)

    Google Scholar 

  24. Elsheikh, A.H., Guo, J., Lee, K.-M.: Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source. J. Therm. Stresses. 42, 361–373 (2019)

    Article  Google Scholar 

  25. Salman, K.h., Elsheikh, A.H., Ashham, M., Ali, M.K.A., Rashad, M., Haiou, Z.: Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J. Braz. Soc. Mech. Sci. Eng. 41, 349 (2019)

  26. Ji, Z., Wu, S.: FEM simulation of the temperature field during the laser forming of sheet metal. J. Mater. Process. Technol. 74, 89–95 (1998)

    Article  Google Scholar 

  27. Chen, D.J., Wu, S.C., Xiang, Y.B., Li, M.Q.: Simulation of three-dimensional transient temperature field during laser bending of sheet metal. Mater. Sci. Technol. 18, 215–218 (2002)

    Article  Google Scholar 

  28. Che Jamil, M.S., Sheikh, M.A., Li, L.: A study of the effect of laser beam geometries on laser bending of sheet metal by buckling mechanism. Opt. Laser Technol. 43, 183–193 (2011)

    Article  Google Scholar 

  29. Zhang, L., Reutzel, E.W., Michaleris, P.: Finite element modeling discretization requirements for the laser forming process. Int. J. Mech. Sci. 46, 623–637 (2004)

    Article  Google Scholar 

  30. Yilbas, B.S., Akhtar, S.S.: Laser bending of metal sheet and thermal stress analysis. Opt. Laser Technol. 61, 34–44 (2014)

    Article  Google Scholar 

  31. Forslund, R., Snis, A., Larsson, S.: Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters. Appl. Math. Model. 66, 227–240 (2019)

    Article  MathSciNet  Google Scholar 

  32. Elsheikh, A.H., Guo, J., Huang, Y., Ji, J., Lee, K.-M.: Temperature field sensing of a thin-wall component during machining: numerical and experimental investigations. Int. J. Heat Mass Transf. 126, 935–945 (2018)

    Article  Google Scholar 

  33. Ramos-Grez, J.A., Sen, M.: Analytical, quasi-stationary Wilson-Rosenthal solution for moving heat sources. Int. J. Therm. Sci. 140, 455–465 (2019)

    Article  Google Scholar 

  34. Hibbeler, L.C., Chin See, M.M., Iwasaki, J., Swartz, K.E., O’Malley, R.J., Thomas, B.G.: A reduced-order model of mould heat transfer in the continuous casting of steel. Appl. Math. Model. 40, 8530–8551 (2016)

    Article  MathSciNet  Google Scholar 

  35. Mejia-Parra, D., Moreno, A., Posada, J., Ruiz-Salguero, O., Barandiaran, I., Poza, J.C., Chopitea, R.: Frequency-domain analytic method for efficient thermal simulation under curved trajectories laser heating. Math. Comput. Simul. (2019)

  36. Sundqvist, J., Kaplan, A.F.H., Shachaf, L., Kong, C.: Analytical heat conduction modelling for shaped laser beams. J. Mater. Process. Technol. 247, 48–54 (2017)

    Article  Google Scholar 

  37. Ma, J., Sun, Y., Yang, J.: Analytical solution of non-Fourier heat conduction in a square plate subjected to a moving laser pulse. Int. J. Heat Mass Transf. 115, 606–610 (2017)

    Article  Google Scholar 

  38. Ma, J., Sun, Y., Yang, J.: Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. Int. J. Therm. Sci. 125, 34–43 (2018)

    Article  Google Scholar 

  39. Chen, G.: Axisymmetric modeling of long pulsed laser heating with convective boundary conditions using analytical solutions. Optik. 130, 1038–1044 (2017)

    Article  Google Scholar 

  40. Chen, G., Bi, J.: Analytical solutions for three-dimensional modeling of temperature rise inside solid material induced by laser irradiation. Optik. 132, 80–88 (2017)

    Article  Google Scholar 

  41. Lambiase, F.: An analytical model for evaluation of bending angle in laser forming of metal sheets. J. Mater. Eng. Perform. 21, 2044–2052 (2012)

    Article  Google Scholar 

  42. Lambiase, F., Di Ilio, A.: A closed-form solution for thermal and deformation fields in laser bending process of different materials. Int. J. Adv. Manuf. Technol. 69, 849–861 (2013)

    Article  Google Scholar 

  43. Majumdar, P., Xia, H., Green, A.: S function model for the analysis of laser heating of materials. Appl. Math. Model. 31, 1186–1200 (2007)

    Article  Google Scholar 

  44. D.W. Hahn, M.N. Özisik, Heat conduction, John Wiley & Sons (2012)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (E050902, E041604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar H. Elsheikh.

Ethics declarations

Ethical Statement

Authors testify that there is no conflict of interest.

Conflict of Interest

The authors declared that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, A.H., Shanmugan, S., Muthuramalingam, T. et al. Modeling of the Transient Temperature Field during Laser Heating. Lasers Manuf. Mater. Process. 8, 97–112 (2021). https://doi.org/10.1007/s40516-021-00138-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-021-00138-2

Keywords

Navigation