Skip to main content
Log in

Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AM:

Additive manufacturing

A:

Laser power

B:

Bed temperature

CCD:

Central composite design

CAD:

Computer aided design

C:

Layer thickness

D:

Scan spacing

ED:

Energy density

E:

Orientation

RSM:

Response surface methodology

RP:

Rapid prototyping

SLS:

Selective laser sintering

References

  1. Chua, C.K., Leong, K.F., Lim, C.S.: Rapid prototyping: principles and applications. 3rd Ed., World Scientific; Singapore (2010)

  2. Klocke, F., Arntz, K., Teli, M., Winands, K., Wegener, M., Oliari, S.: State-of-the-art laser additive manufacturing for hot work tool steels. Procedia CIRP. 63, 58–63 (2017)

    Article  Google Scholar 

  3. Shah, K., Pinkerton, A.J., Salman, A., Li, L.: Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Mater Manuf Process. 25(12), 1372–1380 (2010)

    Article  Google Scholar 

  4. Singh, S., Sharma, V.S., Sachdeva, A.: Optimization & analysis of shrinkage in selective laser sintered polyamide parts. Mater Manuf Process. 27(6), 707–714 (2012)

    Article  Google Scholar 

  5. Singh, S., Sharma, V.S., Sachdeva, A.: Progress in selective laser sintering using metallic powders: a review. Mater Sci Technol. 32(8), 760–772 (2016)

    Google Scholar 

  6. Manoraj, M., Ansari, M.N.M., Shakes, R.A.: Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polym Plast Technol Eng. 56, 1–12 (2017)

    Article  Google Scholar 

  7. Avraam, I.: Injection and compression molding fundamentals. Marcel Dekker Inc, New York (1987)

    Google Scholar 

  8. Aldahdooh, M., Bunnori, N.M., Johari, M.: Evaluation of ultra-high performance fibre reinforced concrete binder content using the response surface method. Mater Des. 52, 957–965 (2013)

    Article  Google Scholar 

  9. Wang, X.: Calibration of shrinkage and beam offset in SLS. Rapid Prototyp J. 5(3), 129–133 (1999)

    Article  Google Scholar 

  10. Kumar, N., Kumar, H., Khurmi, J.S.: Experimental investigation of process parameters for rapid prototyping technique (selective laser sintering) to enhance the part quality of prototype by Taguchi method. Procedia Technol. 23, 352–360 (2016)

    Article  Google Scholar 

  11. Wang, R.J., Wang, L., Zhao, L., Liu, Z., Influence of process parameters on part shrinkage in SLS: Int. J. Adv. Manuf. Technol. 33, 498–504 (2006)

    Article  Google Scholar 

  12. Wu, J., Xu, X., Zhao, Z., Wang, M., Zhang, J.: Study in performance and morphology of polyamide 12 produced by selective laser sintering technology. Rapid. Prototyp. J. 1355–2546 (2017)

  13. Raghunath, N., Pandey, P.M.: Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int J Mach Tools Manuf. 47(6), 985–995 (2007)

    Article  Google Scholar 

  14. Dastjerdi, A.A., Movahhedy, M.R., Akbari, J.: Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts. Addit Manuf. 18, 285–294 (2017)

    Google Scholar 

  15. Baturynska, I.: Statistical analysis of dimensional accuracy in additive manufacturing considering STL model properties. Int J Adv Manuf Technol. 97(5–8), 2835–2849 (2018)

    Article  Google Scholar 

  16. Jiang, G., Jiaming, B., Kui, L., Jun, W.: Surface quality improvement of selective laser sintered polyamide 12 by precision grinding and magnetic field-assisted finishing. Mater Des. 138, 39–45 (2017)

    Google Scholar 

  17. Jain, P.K., Pandey, P.M., Rao, P.V.M.: Effect of delay time on part strength in selective laser sintering. Int J Adv Manuf Technol. 43(1-2), 117–126 (2009)

    Article  Google Scholar 

  18. Yeganeh, A.M., Movahhedy, M.R., Khodaygan, S.: An efficient scanning algorithm for improving accuracy based on minimizing part warping in selected laser sintering process. Virtual Phys Prototyp. 14(1), 59–78 (2019)

    Article  Google Scholar 

  19. Negi, S., Sharma, R.K.: Study on shrinkage behavior of laser sintered PA 3200GF specimens using RSM and ANN. Rapid Prototyp J. 22(4), 645–659 (2016)

    Article  Google Scholar 

  20. Singh, S., Sharma, V.S., Sachdeva, A.: Application of response surface methodology to analyze the effect of selective laser sintering parameters on dimensional accuracy. P. Addit. Manuf. 4(1), 3–12 (2019)

    Article  Google Scholar 

  21. Yang, H.J., Hwang, P.J., Lee, S.H.: A study on shrinkage compensation of the SLS process by using the Taguchi method. Int J Mach Tools Manuf. 42(11), 1203–1212 (2002)

    Article  Google Scholar 

  22. Hiren, M., Gajera, M.E., Dav, K.G., Jani, V.: Experimental investigation and analysis of dimensional accuracy of laser-based powder bed fusion made specimen by application of response surface methodology. P Addit Manuf. 4(4), 371–382 (2019)

    Article  Google Scholar 

  23. Senthilkumaran, K., Pandey, P.M., Rao, P.V.M.: Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des. 30(8), 2946–2954 (2009)

    Article  Google Scholar 

  24. Rong-Ji, W., Xin-hua, L., Qing-ding, W., Lingling, W.: Optimizing process parameters for selective laser sintering based on neural network and genetic algorithm. Int J Adv Manuf Technol. 42(11), 1035–1042 (2009)

    Article  Google Scholar 

  25. Asiabanpour, B., Palmer, K., Khoshnevis, B.: An experimental study of surface quality and dimensional accuracy for selective inhibition of sintering. Rapid Prototyp J. 10(3), 181–192 (2004)

    Article  Google Scholar 

  26. Ning, Y., Song, Y.S., Fuh, J.Y.H.: Effect and control of hatch length on material properties in the direct metal laser sintering process. J Eng Manuf. 219(1), 15–25 (2005)

    Article  Google Scholar 

  27. Shi, Y., Li, Z., Sun, H., Huang, S., Zeng, F.: Effect of the properties of the polymer materials on the quality of selective laser sintering parts. J Mater Des A. 218(3), 247–252 (2004)

    Google Scholar 

  28. Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2012)

    Google Scholar 

  29. Dotchev, K., Yusoff, W.: Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J. 15(3), 192–203 (2009)

    Article  Google Scholar 

  30. Dotchev, K., Yusoff, W.: Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J. 15(3), 192–203 (2009)

    Article  Google Scholar 

  31. Chunze, Y., Yusheng, S., Jingsong, Y., Jinhui, L.: Preparation and selective laser sintering of nylon-12 coated metal powders and post processing. J Mater Process Tech. 209, 5785–5792 (2009)

    Article  Google Scholar 

  32. Cezairliyan, A., Maglic, K.D., Peletsky, V.E.: (eds.) Compendium of thermophysical property measurement methods. Springer Science Business Media New York. (1992)

  33. Mukras, S.M.S., Omar, H.M., Al-Mufadi, F.A.: Experimental-based multi-objective optimization of injection molding process parameters. Arab J Sci Eng. 44(9), 7653–7665 (2019)

    Article  Google Scholar 

  34. Sharma, V.S., Singh, S., Sachdeva, A., Kumar, P.: Influence of sintering parameters on dynamic mechanical properties of selective laser sintered parts. Int J Mater Form. 8, 157–166 (2015)

    Article  Google Scholar 

  35. Montgomery, D.C.: Design and analysis of experiments. Wiley, Hoboken (2013)

    Google Scholar 

  36. Myers, R.H., Montgomery, D.C., Anderson, C.M.: Response surface methodology: process and product optimization using designed experiments, 3rd edn. John Wiley & Sons, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanjit Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Chand, R., Sharma, V.S. et al. Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts. Lasers Manuf. Mater. Process. 8, 73–96 (2021). https://doi.org/10.1007/s40516-020-00136-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-020-00136-w

Keywords

Navigation