Skip to main content
Log in

Water-Jet Guided Laser Cutting Technology- an Overview

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Water-jet guided laser cutting technology is a relatively new technology, which utilizes a water jet and laser beam (pulsed Nd: YAG laser) to cut. The technology is able to cut with high precision without blurs. It also produces less heat and pollution at the cutting zone, unlike conventional machining. This article reviews the characteristics of this new technology and its usage in laser material processing. Apart from cutting speed and laser power which are common parameters that affect most lasers technologies, water-jet pressure and properties of the water used were cited to have effect on the cut quality. Mathematical model and simulation results from literature observed that, decreasing the cooling effect of water-jet improves cutting process. Similarly, nozzle geometry also affect on the cut quality since it relates to the water-jets pressure and velocity. The current review does not however consider the effect of pressure of the water which affect the refractive index and in effect the wave-guide phenomenon. Nonetheless, a comparison between the water-jet and conventional laser technologies is discussed herein and the article concluded by highlighting some of the most exciting recent developments, the technical difficulties and the future development trends of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ε :

Emissivity

σ :

Stefan-Boltzmann constant (5.67 × 10−8 W/m2 K4)

Nu :

Nusselt number

l :

Character length (m)

λ :

Liquid conduction coefficient (W/m2 K)

Pr :

Prandtl number

c pw :

Water specific heat (J/Kg K)

μ w :

Kinetic viscosity of the water (m/s)

k w :

Conduction coefficient of the water (W/m K)

R e :

Reynolds number

ρ w :

Density of the water (kg/m3)

V w :

Flow velocity (m/s)

φ :

Pressure loss coefficient (Pa)

p w :

Water pressure (Pa)

[K]:

Temperature stiffness matrix

[C]:

Non-steady state temperature change matrix

{T}:

Temperature vector

\( \left\{\dot{\mathrm{T}}\right\} \) :

Derivative vector of the temperature

{Q}:

Heat load vector

θ :

Transient integration coefficient ( ° )

\( \left\{{\dot{T}}_n\right\} \) :

Temperature derivative matrix of the e nodes at tn.

μ :

Velocity of the continuous phase (m/s)

i, κ :

Coordinate direction

ρ :

Density of continuous phase (kg/m3)

p :

Pressure of continuous phase (Pa)

μ :

Molecular dynamic viscosity coefficient (N s/m2)

μ t :

Turbulence kinetic viscosity coefficient (N s/m2)

K :

Turbulent pulsating kinetic energy of the unit mass of fluid (J/kg)

ε :

Turbulent pulsating kinetic energy dissipation rate unit mass of fluid (J/kg)

κ σ :

Turbulent Prandtl number of κ

ε σ :

Turbulent Prandtl number ε

References

  1. Liu, Q., Duan, X., Peng, C.: Novel Optical Technologies for Nanofabrication. Springer, Heidelberg (2014)

    Book  Google Scholar 

  2. Dutta Majumdar, J., Manna, I.: Laser processing of materials. Sadhana. 28(3–4), 495–562 (2003)

    Article  Google Scholar 

  3. Steen, W.M.: Laser material processing—an overview. J. Opt. A Pure Appl. Opt. 5(4), S3–S7 (2003)

    Article  Google Scholar 

  4. Sun, B., Qiao, H., Zhao, J., Lu, Y., Guo, Y.: Current status of water-jet guided laser cutting technology. Opto-Electron Eng. 44(11), 1039–1044 (2018)

    Google Scholar 

  5. Happonen, A., Stepanov, A., Piili, H.: Feasible application area study for linear laser cutting in paper making processes. Phys. Procedia. 78, 174–181 (2015). https://doi.org/10.1016/j.phpro.2015.11.030

    Article  Google Scholar 

  6. Sealy, M.P., Guo, Y.B., Liu, J.F., Li, C.: Pulsed laser cutting of magnesium-calcium for biodegradable stents. Procedia CIRP. 42, 67–72 (2016). https://doi.org/10.1016/j.procir.2016.02.190

    Article  Google Scholar 

  7. Engelhardt, U., Hildenhagen, J., Dickmann, K.: Micromachining using high-power picosecond lasers. Laser Technik Journal. 8(5), 32–35 (2011). https://doi.org/10.1002/latj.201190056

    Article  Google Scholar 

  8. Hock, K., Adelmann, B., Hellmann, R.: Comparative study of remote Fiber laser and water-jet guided laser cutting of thin metal sheets. Phys. Procedia. 39, 225–231 (2012). https://doi.org/10.1016/j.phpro.2012.10.033

    Article  Google Scholar 

  9. Steen, W.M., Mazumder, J.: Laser Material Processing. Springer, London (2010)

    Book  Google Scholar 

  10. Wagner, F.R., Boillat, C., Buchilly, J.-M., Spiegel, A., Vago, N., Richerzhagen, B.: High-speed cutting of thin materials with a Q-switched laser in a water-jet versus conventional laser cutting with a free running laser. In: High-Power Lasers and Applications 2003, p. 5. SPIE

  11. Wang, Y., Yang, L.J., Tang, J., Li, L., Chen, Y.B.: Laser and water-jet Fiber coupling Technology for Water-jet Guided Laser Micromachining. Adv. Mater. Res. 69-70, 29–33 (2009). https://doi.org/10.4028/www.scientific.net/AMR.69-70.29

    Article  Google Scholar 

  12. Rashed, C.A.A., Romoli, L., Tantussi, F., Fuso, F., Burgener, M., Cusanelli, G., Allegrini, M., Dini, G.: Water jet guided laser as an alternative to EDM for micro-drilling of fuel injector nozzles: a comparison of machined surfaces. J. Manuf. Process. 15(4), 524–532 (2013). https://doi.org/10.1016/j.jmapro.2013.08.002

    Article  Google Scholar 

  13. Kruusing, A.: Underwater and water-assisted laser processing: part 1 - general features, steam cleaning and shock processing. Opt. Lasers Eng. 41(2), 307–327 (2004). https://doi.org/10.1016/S0143-8166(02)00142-2

    Article  Google Scholar 

  14. Kruusing, A.: Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods. Opt. Lasers Eng. 41(2), 329–352 (2004). https://doi.org/10.1016/S0143-8166(02)00143-4

    Article  Google Scholar 

  15. Perrottet, D., Boillat, C., Amorosi, S., Richerzhagen, B.: PV processing: improved PV-cell scribing using water jet guided laser. Refocus. 6(3), 36–37 (2005). https://doi.org/10.1016/S1471-0846(05)70398-X

    Article  Google Scholar 

  16. Schopphoven, T., Gasser, A., Backes, G.: EHLA: extreme high-speed laser material deposition. Laser Technik Journal. 14(4), 26–29 (2017). https://doi.org/10.1002/latj.201700020

    Article  Google Scholar 

  17. Wandera, C., Niyibizi, A.: Potential benefits of adoption of laser materials processing in East Africa's manufacturing industry. In: 3rd DeKUT International Conference on STI&E NYERI, KENYA, pp. 125–141. Dedan Kimathi University of Technology (2018)

  18. Dobrzański, L.A., Drygała, A.: Laser processing of multicrystalline silicon for texturization of solar cells. J. Mater. Process. Technol. 191(1), 228–231 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.009

    Article  Google Scholar 

  19. Li, C.F., Johnson, D.B., Kovacevic, R.: Modeling of waterjet guided laser grooving of silicon. Int. J. Mach. Tools Manuf. 43(9), 925–936 (2003). https://doi.org/10.1016/S0890-6955(03)00063-4

    Article  Google Scholar 

  20. Couty, P., Spiegel, A., Vágó, N., Ugurtas, B.I., Hoffmann, P.: Laser-induced break-up of water jet waveguide. Exp. Fluids. 36(6), 919–927 (2004). https://doi.org/10.1007/s00348-003-0775-x

    Article  Google Scholar 

  21. Hecht, J.: Understanding Fiber Optics, 3rd edn. Prentice-Hall, Inc (1999)

  22. Richerzhagen, B., Delacretaz, G.P., Salathe, R.-P.: Complete Model to Simulate the Thermal Defocusing of a Laser Beam Focused in Water, p. 9. SPIE (1996)

  23. Brecher, C., Janssen, H., Eckert, M., Schmidt, F.: Thermal investigation of interaction between high-power CW-laser radiation and a water-jet. Phys. Procedia. 83, 317–327 (2016). https://doi.org/10.1016/j.phpro.2016.08.033

    Article  Google Scholar 

  24. Yang, L.J., Wang, M.L., Wang, Y., Tang, J., Chen, Y.B.: Numerical simulation on the temperature field of water-jet guided laser micromachining. Adv. Mater. Res. 69-70, 333–337 (2009). https://doi.org/10.4028/www.scientific.net/AMR.69-70.333

    Article  Google Scholar 

  25. Long, Y., Feng, T., Bao, J., Tong, Y.: Structural Design of Nozzle Based on Hybrid Laser/Water-Jet Scribing Technology. Paper Presented at the 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016),

  26. Salem, H.G., Mansour, M.S., Badr, Y., Abbas, W.A.: CW Nd:YAG laser cutting of ultra low carbon steel thin sheets using O2 assist gas. J. Mater. Process. Technol. 196(1), 64–72 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.013

    Article  Google Scholar 

  27. Yilbas, B.S., Shaukat, M.M., Ashraf, F.: Laser cutting of various materials: kerf width size analysis and life cycle assessment of cutting process. Opt. Laser Technol. 93, 67–73 (2017). https://doi.org/10.1016/j.optlastec.2017.02.014

    Article  Google Scholar 

  28. Li, L., Wang, Y., Yang, L., Chu, J.: Experimental research on water-jet guided laser processing. In: Fundamental Problems of Optoelectronics and Microelectronics III, p. 6. SPIE (2007)

  29. Ng, E.Y.-K., Guannan, D.: The stability of 30-μm-diameter water jet for jet-guided laser machining. Int. J. Adv. Manuf. Technol. 78(5), 939–946 (2015). https://doi.org/10.1007/s00170-014-6692-8

    Article  Google Scholar 

  30. Weiss, L., Aillerie, M., Tazibt, A., Tidu, A.: Surface oxidation and phase transformation of the stainless steel by hybrid laser-waterjet impact. Materials Research Express. 1(3), 036501 (2014)

    Article  Google Scholar 

  31. Adelmann, B., Ngo, C., Hellmann, R.: High aspect ratio cutting of metals using water jet guided laser. Int. J. Adv. Manuf. Technol. 80(9), 2053–2060 (2015). https://doi.org/10.1007/s00170-015-7161-8

    Article  Google Scholar 

  32. Abd El-Aty, A., Xu, Y., Guo, X., Zhang, S.-H., Ma, Y., Chen, D.: Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J. Adv. Res. 10, 49–67 (2018). https://doi.org/10.1016/j.jare.2017.12.004

    Article  Google Scholar 

  33. Porter, J.A., Louhisalmi, Y.A., Karjalainen, J.A., Füger, S.: Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence. Int. J. Adv. Manuf. Technol. 33(9), 961–967 (2007). https://doi.org/10.1007/s00170-006-0521-7

    Article  Google Scholar 

  34. Mai, T.A., Richerzhagen, B., Snowdon, P.C., Wood, D., Maropoulos, P.G.: The laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining. In: Lasers and Applications in Science and Engineering, p. 7. SPIE (2007)

  35. Chida, I., Shiihara, K., Nomura, K., Sumiya, R., Suganuma, N.: Decreasing Waste of Laser Cutting by Metal Fume Capturing With Water. (45943), V004T008A004 (2014). https://doi.org/10.1115/ICONE22-30337

  36. Synova: Synova Products. https://www.synova.ch/products/all-synova-systems/item/64-lcs-300.html (2018). Accessed 28 June 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitus M. Tabie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabie, V.M., Koranteng, M.O., Yunus, A. et al. Water-Jet Guided Laser Cutting Technology- an Overview. Lasers Manuf. Mater. Process. 6, 189–203 (2019). https://doi.org/10.1007/s40516-019-00089-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-019-00089-9

Keywords

Navigation