Skip to main content
Log in

Influence of Reinforcement Geometrical Parameters on Plate Anchor Uplift Capacity

  • Technical Paper
  • Published:
Transportation Infrastructure Geotechnology Aims and scope Submit manuscript

Abstract

A novel method is introduced in the present research by punching a series of openings into the geotextile (called grid-geotextile) to produce an interlocking mechanism as occurred in geogrid reinforcements. A series of pull-out laboratory model tests were performed in three different gradations of sand beds using polypropylene geotextile reinforcement and grid-geotextile reinforcement consisting of different sizes of aperture of 10 mm × 10 mm, 20 mm × 20 mm, and 30 mm × 30 mm, each having a rib size of 15 mm. Interestingly, based on the type of sand, the test results revealed that the grid-geotextile reinforcements of 20 mm × 20 mm improve the anchor uplift capacity 1.15 to 1.25 times as compared to the geotextile reinforcement, even though the amount of reinforcement and tensile stiffness are 1.32 times and 7.76 times lesser as compared to geotextile reinforcement material. Moreover, the present study highlights the influence of reinforcement geometrical parameters on anchor uplift capacity as compared to reinforcement tensile stiffness and accentuates the optimum ranges of influence parameters to the acquisition of maximum reinforcement benefits. Consequently, simple correlations were developed and presented along with the limits for finding the uplift capacity of geogrid reinforced sand beds with the influencing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data and materials presented in this paper are available.

Code Availability

Relevant Codes are available.

Abbreviations

A :

Aperture size of the grid-geotextile reinforcement layer (mm)

B g :

Width of the reinforcement layer (mm)

C c :

Soil particle’s curvature coefficient (dimensionless)

C u :

Soil particle's uniformity coefficient (dimensionless)

CMD :

Cross machine direction

D :

Diameter of the anchor plate (mm)

D 50 :

Medium soil particle size (mm)

d min :

Minimum dimension of apertures (mm)

EA :

Secant modulus of reinforcement material (kN/m)

h :

Vertical spacing of the reinforcement layers (mm)

L :

Depth of anchor plate (mm)

MD :

Machine direction

N :

Number of reinforcement layers

Q u :

Unreinforced sand ultimate pull-out capacity (kPa)

R :

Rib size of grid-geotextile reinforcement layer (mm)

R d :

Relative density of sand (%)

TF:

Techno Fabric

References

  • Abu-Farsakh, M., Chen, Q., Sharma, R.: An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand. Soils Found. 53(2), 335–348 (2013). https://doi.org/10.1016/j.sandf.2013.01.001

    Article  Google Scholar 

  • Adams, J.I., Hayes, D.C.: The uplift capacity of shallow foundations. Ontario Hydro. Res. Q. 19(1), 1–13 (1967)

    Google Scholar 

  • Afzali-Nejad, A., Lashkari, A., Shourijeh, P.T.: Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces. Geotext. Geomembr. 45(1), 54–66 (2017). https://doi.org/10.1016/j.geotexmem.2016.07.005

    Article  Google Scholar 

  • Akbar, A., Bhat, J.A., Mir, B.A.: Plate load tests for investigation of the load–settlement behavior of shallow foundation on bitumen-coated geogrid reinforced soil bed. Innov. Infrastruct. Soluti. 6(2), 80 (2021). https://doi.org/10.1007/s41062-020-00397-6

    Article  Google Scholar 

  • Akbar Husain, K. B., & Samirsinh Parmar, P.: Experimental and analytic study of the uplift capacity of a horizontal plate anchor embedded in geo-reinforced sand. In: Agnihotri, A. K., Reddy, K. R., Chore, H. S. (eds) Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC) 2021, Vol. 1. IGGEC 2021. Lect. Notes Civ. Eng. 280 (2021). https://doi.org/10.1007/978-981-19-4739-1_26

  • ASTM D3080–04: Standard test method for direct shear test of soil under consolidated drained conditions. ASTM Committee. West Conshohocken, PA: ASTM (2012).

  • ASTM D5199: Standard test method for measuring the nominal thickness of geosynthetics. ASTM Committee. West Conshohocken, PA: ASTM (2012).

  • ASTM D6637: Standard test method for determining tensile properties of geogrids by the single or multi-rib tensile method. ASTM Committee. West Conshohocken, PA: ASTM (2015).

  • ASTM D4254: Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM Committee. West Conshohocken, PA: ASTM (2016).

  • ASTM D4595: Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM Committee. West Conshohocken, PA: ASTM (2017).

  • ASTM D5321: Standard test method for determining the shear strength of soil-geosynthetic and geosynthetic-geosynthetic interfaces by direct shear. ASTM Committee. West Conshohocken, PA: ASTM (2017).

  • ASTM D6913: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM Committee. West Conshohocken, PA: ASTM (2017).

  • ASTM D5261: Standard test method for measuring mass per unit area of geotextiles. ASTM Committee. West Conshohocken, PA: ASTM (2018).

  • Brown, S.F., Kwan, J., Thom, N.H.: Identifying the key parameters that influence geogrid reinforcement of railway ballast. Geotext. Geomembr. 25(6), 326–335 (2007). https://doi.org/10.1016/j.geotexmem.2007.06.003

    Article  Google Scholar 

  • Chen, C.: Discrete element modelling of geogrid-reinforced railway ballast and track transition zones. Ph.D. Dissertation, University of Nottingham (2013).

  • Choudhary, A.K., Pandit, B., Babu, G.L.S.: Uplift capacity of horizontal anchor plate in geocell reinforced sand. Geotext. Geomembr. 47(2), 203–216 (2019). https://doi.org/10.1016/j.geotexmem.2018.12.009

    Article  Google Scholar 

  • Choudhary, A. K., Dash, S. K.: Uplift behavior of horizontal plate anchors embedded in geocell reinforced sand. Proceedings of Indian Geotechnical Conference, Roorkee, pp. 1–5 (2013).

  • Consoli, N.C., Thomé, A., Girardello, V., Ruver, C.A.: Uplift behavior of plates embedded in fiber-reinforced cement stabilized backfill. Geotext. Geomembr. 35(2012), 107e111 (2012). https://doi.org/10.1016/j.geotexmem.2012.09.002

  • Cuelho, E., Perkins, S., & Morris, Z.: Relative operational performance of geosynthetics used as subgrade stabilization. Final Project Report, FHWA/MT-14-1002/7712-251. Research Programs. State of Montana. Dept. of Transportation Montana, USA (2014).

  • Dickin, E.A.: Uplift behavior of horizontal anchor plates in sand. J. Geotech. Eng. 114(11), 1300–1317 (1988). https://doi.org/10.1061/(ASCE)0733-9410(1988)114;11(1300)

    Article  Google Scholar 

  • Ferreira, F.B., Vieira, C.S., Lopes, M.L., Ferreira, P.G.: HDPE geogrid-residual soil interaction under monotonic and cyclic pullout loading. Geosynth. Int. 27(1), 79–96 (2020). https://doi.org/10.1680/jgein.19.00057

    Article  Google Scholar 

  • Gao, Y.-X., Zhu, H.-H., Ni, Y.-F., Wei, C., Shi, B.: Experimental study on uplift behavior of shallow anchor plates in geogrid-reinforced soil. Geotext. Geomembr. 50(5), 994–1003 (2022). https://doi.org/10.1016/j.geotexmem.2022.06.006

    Article  Google Scholar 

  • Ghosh, A., Bera, A.K.: Effect of geotextile ties on uplift capacity of anchors embedded in sand. Geotech. Geol. Eng. 28, 567–577 (2010). https://doi.org/10.1007/s10706-010-9313-9

    Article  Google Scholar 

  • Giampa, J.R., Bradshaw, A.S., Gerkus, H., Gilbert, R.B., Gavin, K.G., Sivakumar, V.: The effect of shape on the pull-out capacity of shallow plate anchors in sand. Géotechnique 69(4), 355–363 (2019). https://doi.org/10.1680/jgeot.17.P.269

    Article  Google Scholar 

  • Giffels, W.C., Graham, R.E., Mook, J.F.: Concrete cylinder anchors proved for 345-KV tower line. Electr. World 154, 46–49 (1960)

    Google Scholar 

  • Gongora, I. A., Palmeira, E. M.: Assessing the influence of soil-reinforcement interaction parameters on the performance of a low fill on compressible subgrade. Part I: fill performance and relevance of interaction parameters. Int. J. Geosynth. Ground Eng. 2, 1–17 (2016). https://doi.org/10.1007/s40891-015-0042-2

  • Guido, V.A., Biesiadecki, G.L., Sullivan, M.J.: Bearing capacity of a geotextile-reinforced foundation. Int. Conf. Soil Mech. Found. Eng. 11, 1777–1780 (1985)

    Google Scholar 

  • Guido, V.A., Chang, D.K., Sweeney, M.A.: Comparison of geogrid and geotextile reinforced earth slabs. Can. Geotech. J. 23(4), 435–440 (1986). https://doi.org/10.1139/t86-073

    Article  Google Scholar 

  • Ilamparuthi, K., Dickin, E.A.: The influence of soil reinforcement on the uplift behaviour of belled piles embedded in sand. Geotext. Geomembr. 19(1), 1–22 (2001a). https://doi.org/10.1016/S0266-1144(00)00010-8

    Article  Google Scholar 

  • Ilamparuthi, K., Dickin, E.A.: Predictions of the uplift response of model belled piles in geogrid cell-reinforced sand. Geotext. Geomembr. 19(2), 89–109 (2001b). https://doi.org/10.1016/S0266-1144(00)00011-X

    Article  Google Scholar 

  • Ilamparuthi, K., Dickin, E.A., Muthukrisnaiah, K.: Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand. Can. Geotech. J. 39(3), 648–664 (2002). https://doi.org/10.1139/T02-005

    Article  Google Scholar 

  • Khatun, S., Chottopadhyay, B. C.: Uplift capacity of plate anchors with reinforcement. In Indian Geotechnical Conference, pp. 821–824 (2010).

  • Kishor Kumar, V., Ilamparuthi, K.: Performance of anchor in sand with different forms of geosynthetic reinforcement. Geosynth. Int. 27(5), 503–522 (2020). https://doi.org/10.1680/jgein.20.00013

    Article  Google Scholar 

  • Krishnaswamy, N.R., Parashar, S.P.: Uplift behaviour of plate anchors with geosynthetics. Geotext. Geomembr. 13(2), 67–89 (1994). https://doi.org/10.1016/0266-1144(94)90040-X

    Article  Google Scholar 

  • Latha, G.M., Somwanshi, A.: Effect of reinforcement form on the bearing capacity of square footings on sand. Geotext. Geomembr. 27(6), 409–422 (2009). https://doi.org/10.1016/j.geotexmem.2009.03.005

    Article  Google Scholar 

  • Mehrjardi, G.T., Khazaei, M.: Scale effect on the behavior of geogrid-reinforced soil under repeated loads. Geotext. Geomembr. 45(6), 603–615 (2017). https://doi.org/10.1016/j.geotexmem.2017.08.002

    Article  Google Scholar 

  • Mehrjardi, G.T., Ghanbari, A., Mehdizadeh, H.: Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size. Geotext. Geomembr. 44(6), 862–871 (2016). https://doi.org/10.1016/j.geotexmem.2016.06.006

    Article  Google Scholar 

  • Merifield, R. S., Sloan, S. W.: The ultimate pullout capacity of anchors in frictional soils. Can. Geotech. J. 43(8), 852–868 (2006). http://cgj.nrc.ca

  • Mitsch, M.P., Clemence, S.P.: Uplift capacity of helix anchors in sand, pp. 26–47. In Unknown Host Publication Title, American Society of Civil Engineers (ASCE) (1985)

    Google Scholar 

  • Moghaddas Tafreshi, S. N., Rahimi, M., Dawson, A., Leshchinsky. B.: Cyclic and post-cycling anchor response in geocell-reinforced sand. Can. Geotech. J. 56(11), 1700–1718 (2018). https://doi.org/10.1139/cgj-2018-0559

  • Murray, E.J., Geddes, J.D.: Resistance of passive inclined anchors in cohesionless soil. Geotechnique 39(3), 417–431 (1989)

    Article  Google Scholar 

  • Niroumand, H., Kassim, K.A., Nazir, R.: The influence of soil reinforcement on the uplift response of symmetrical anchor plate embedded in sand. Measurement 46(8), 2608–2629 (2013). https://doi.org/10.1016/j.measurement.2013.04.072

    Article  Google Scholar 

  • Noorzad, A., Badakhshan, E.: Investigations on pullout behavior of geogrid-granular trench using CANA sand constitutive mode. J. Rock Mech. Geotech. Eng. 9(4), 726–740 (2017). https://doi.org/10.1016/j.jrmge.2017.03.013

  • Palmeira, E.M., Góngora, I.A.: Assessing the influence of some soil–reinforcement interaction parameters on the performance of a low fill on compressible subgrade. Part I: Fill Perform. Relevance Interact. Parameters Int. J. Geosynth. Ground Eng. 2, 1–17 (2016). https://doi.org/10.1007/s40891-015-0041-3

    Article  Google Scholar 

  • Phanikumar, B.R., Prasad, R., Singh, A.: Compressive load response of geogrid-reinforced fine, medium and coarse sands. Geotext. Geomembr. 27(3), 183–186 (2009). https://doi.org/10.1016/j.geotexmem.2008.11.003

    Article  Google Scholar 

  • Rahimi, M., Moghaddas Tafreshi, S.N., Leshchinsky, B., Dawson, A.R.: Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand. Geotext. Geomembr. 46(6), 801–816 (2018a). https://doi.org/10.1016/j.geotexmem.2018.07.010

    Article  Google Scholar 

  • Rahimi, M., Leshchinsky, B., Moghaddas Tafreshi, S.N.: Assessing the ultimate uplift capacity of plate anchors in geocell-reinforced sand. Geosynth. Int. 25(6), 612–629 (2018b). https://doi.org/10.1680/jgein.18.00029

    Article  Google Scholar 

  • Ravichandran, P.T., Ilamparuthi, K., Toufeeq, M.M.: Investigation on uplift behaviour of plate anchor in reinforced sand bed. Electronical J. Geotech. Eng. 13, 1–8 (2008)

    Google Scholar 

  • Ravichandran, P. T., Ilamparuthi, K.: Uplift behaviour of strip anchor in sand and reinforced sand beds Indian Geotech. J. 38(2), 156–170 (2008).

  • Sivaraman, S., Ilamparuthi, K., & Kishor Kumar, V.: Experimental investigations on behaviour of single and multiple anchors in cohesionless soil. Proceedings of the First Annual Conference on Innovations and Developments in Civil Engineering, ACIDIC2014 NITK, Surathkal, India (2014).

  • Sweta, K., Hussaini, S.K.K.: Effect of shearing rate on the behavior of geogrid reinforced railroad ballast under direct shear conditions. Geotext. Geomembr. 46(3), 251–256 (2018). https://doi.org/10.1016/j.geotexmem.2017.12.001

    Article  Google Scholar 

  • Sweta, K., Hussaini, S.K.K.: Behavior evaluation of geogrid-reinforced ballast sub ballast interface under shear condition. Geotext. Geomembr. 47(1), 23–31 (2019). https://doi.org/10.1016/j.geotexmem.2018.09.002

    Article  Google Scholar 

  • Useche-Infante, D., Aiassa Martinez, G., Arrua, P., Eberhardt, M.: Experimental study of behaviour of circular footing on geogrid-reinforced sand. Geomech. Geoeng. 17(1), 45–63 (2019). https://doi.org/10.1080/17486025.2019.1683621

    Article  Google Scholar 

  • Vieira, C.S., Lopes, M.D.L., Caldeira, L.M.: Sand-geotextile interface characterization through monotonic and cyclic direct shear tests. Geosynth. Int. 20(1), 26–38 (2013). https://doi.org/10.1680/gein.12.00037

    Article  Google Scholar 

  • Wang, J., Liu, F.Y., Zheng, Q.T., Cai, Y.Q., Gou, C.F.: Effect of aperture ratio on the cyclic shear behaviour of aggregate-geogrid interfaces. Geosynth. Int. 28(2), 158–173 (2021). https://doi.org/10.1680/jgein.20.00038

    Article  Google Scholar 

  • Won, M.S., Ling, H.I., Kim, Y.S.: A study of the deformation of flexible pipes buried under model reinforced sand. KSCE J. Civil Eng. 8(4), 377–385 (2004). https://doi.org/10.1007/BF02829161

    Article  Google Scholar 

  • Yetimoglu, T., Wu, J.T.H., Saglamer, A.: Bearing capacity of rectangular footings on geogrid-reinforced sand. J. Geotech. Eng. 120(12), 2083–2099 (1994). https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2083)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Venkatesh Buragadda and Eswara Reddy Orekanti conceptualized, designed, and carried out the experiments, analyzed the results, and contributed to writing the original draft preparation. Vinod Yadav Garu and Pavan Kalyani Edagotti contributed to carrying out the experiments and analyzing the results and contributed to writing, reviewing, and editing.

Corresponding author

Correspondence to Eswara Reddy Orekanti.

Ethics declarations

Competing Interest

The author(s) declare no potential conflicts of interest concerning the research, authorship, and/or publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buragadda, V., Orekanti, E.R., Garu, V.Y. et al. Influence of Reinforcement Geometrical Parameters on Plate Anchor Uplift Capacity. Transp. Infrastruct. Geotech. (2023). https://doi.org/10.1007/s40515-023-00351-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40515-023-00351-w

Keywords

Navigation