Skip to main content
Log in

The Hilbert–Schmidt norm as a measure of entanglement in spin-1/2 Heisenberg chain: generalized Bell inequality and distance between states

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

Entanglement calculations have received renewed interest with the advances observed in the field of quantum computing. Alternative methods to calculate entanglement that can be applied to broader classes of problems have become increasingly necessary. In this letter, we show that the measure of entanglement using the generalized Bell inequality and the distance between states coincide when we use the Hilbert–Schmidt norm. Our conclusions apply to the spin-1/2 Heisenberg chains with the interaction between the first neighbours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Aspect, A., Grangier, P., Roger, G.: A new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 1804 (1982)

    Article  MathSciNet  Google Scholar 

  2. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A. 223, 1 (1996)

  3. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

  4. Witte, C., Trucks, M.: A new entanglement measure induced by the Hilbert–Schmidt norm. Phys. Lett. A 257, 14 (1999)

  5. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

  6. Ghosh, S., Rosenbaum, T.F., Aeppli, G., Coppersmith, S.N.: Entangled quantum state of magnetic dipoles. Nature 425, 48 (2003)

  7. Ball, P.: The dawn of quantum biology. Nature 474, 272 (2011)

  8. Bose, S., Mazumdar, A., Morley, G.W., Ulbricht, H., Toroš, M., Paternostro, M., Geraci, A.A., Barker, P.F., Kim, M.S., Milburn, G.: Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017)

  9. Wieśniak, M., Vedral, V., Brukner, C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)

    Article  Google Scholar 

  10. Del Cima, O.M., Franco, D.H.T., Silva, S.L.L.: Quantum entanglement in trimer spin-1/2 Heisenberg chains with antiferromagnetic coupling. Quantum Stud. Math. Found. 3, 57 (2015). https://doi.org/10.1007/s40590-015-0059-1

  11. Li, Y.-Q., Zhu, G.-Q.: Concurrence vectors for entanglement of high-dimensional systems. Front. Phys. China. 3, 250 (2008)

  12. Osterloh, A.: SL-invariant entanglement measures in higher dimension: the case of spin 1 and 3/2. J. Phys. A: Math. Theor. 48, 065303 (2015). https://doi.org/10.1007/s40509-017-0149-3

  13. Bahmani, H., Najarbashi, G., Tavana, A.: Generalized concurrence and quantum phase transition in spin-1 Heisenberg model. Phys. Scr. 95, 055701 (2020)

  14. Scheie, A., Laurell, P., Samarakoon, A.M., Lake, B., Nagler, S.E., Granroth, G.E., Okamoto, S., Alvarez, G., Tennant, D.A..: Witnessing entanglement in quantum magnets using neutron scattering. Phys. Rev. B. 103, 224434 (2021)

  15. Silva, S.L.L.: Thermal entanglement in \(2 \otimes 3\) Heisenberg chains via distance between states. Int. J. Theor. Phys. 60, 3861 (2021). https://doi.org/10.1007/s10773-021-04944-4

  16. Dahl, G., Leinaas, J.M., Myrhein, J., Ovrum, E.: A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420, 711 (2007)

  17. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

  18. Daoud, M., Laamara, R.A., Seddik, S.: Hilbert–Schmidt measure of pairwise quantum discord for three-qubit X states. Rep. Math. Phys. 76, 207 (2015)

  19. Bartkiewicz, K., Trávníček, V., Lemr, K.: Measuring distances in Hilbert space by many-particle interference. Phys. Rev. A 99, 032336 (2019)

  20. Silva, S.L.L.: Entanglement of spin-\(1/2\) Heisenberg antiferromagnetic quantum spin chains. Quantum Stud. Math. Found. 5, 1 (2017). https://doi.org/10.1007/s40509-017-0149-3

  21. Del Cima, O.M., Franco, D.H.T., Silva, M.M.: Magnetic shielding of quantum entanglement states. Quantum Stud. Math. Found. 6, 141 (2019). https://doi.org/10.1007/s40509-018-0172-z

  22. Bertlmann, R.A., Narnhofer, H., Thirring, W.: Geometric picture of entanglement and bell inequalities. Phys. Rev. A. 66, 032319 (2002)

  23. O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A. 63, 052302 (2001)

  24. Wang X., Zanardi, P.: Quantum entanglement and Bell inequalities in Heisenberg spin chains. Phys. Lett. A. 301, 1 (2002)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to the work and have approved the content.

Corresponding author

Correspondence to Saulo L. L. Silva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Authors consent to participation.

Consent for publication

Authors consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.L.L., Franco, D.H.T. The Hilbert–Schmidt norm as a measure of entanglement in spin-1/2 Heisenberg chain: generalized Bell inequality and distance between states. Quantum Stud.: Math. Found. 9, 219–224 (2022). https://doi.org/10.1007/s40509-021-00266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-021-00266-6

Keywords

Navigation