Skip to main content

Advertisement

Log in

Bloodstream Infections Caused by Waterborne Bacteria

  • Treatment and Prevention of Hospital Infections (D Vilar-Compte, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of Review

We describe the mechanisms and risk factors related to non-gastrointestinal waterborne hospital-acquired infections, including bloodstream infections. Included are some characteristics of the main bacteria described in the literature.

Recent Findings

In the last two decades, the number of water living bacteria that had been identified as causing healthcare-associated waterborne infections has expanded. Among these, Legionella, Enterobacteriaceae, Pseudomonas aeruginosa, other non-fermenting bacteria, and nontuberculous mycobacteria are included. We describe some of the main characteristics of the bacteria associated with the infections in the hospital setting, mostly bloodstream infections.

Summary

No single approach guarantees that hospital water will be safe for vulnerable patients, but a combination of engineering, chlorination surveillance, hygiene measures, and clinical care strategies can minimize the risk. Microbial contamination of the water supply in healthcare facilities is better prevented than remediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sharma S, Sachdeva P, Virdi JS. Emerging water-borne pathogens. Appl Microbiol Biotechnol. 2003;61:424–8. https://doi.org/10.1007/s00253-003-1302-y.

    Article  CAS  PubMed  Google Scholar 

  2. • Gamage SD, Ambrose M, Kralovic SM, Roselle GA. Water safety and Legionella in health care: priorities, policy, and practice. Infect Dis Clin N Am. 2016;30:689–712. https://doi.org/10.1016/j.idc.2016.04.004This review emphasizes the importance of maintaining an adequate water distribution system in hospitals, in order to have sufficient quality water that reduces the risk of infections associated with it.

  3. •• Decker BK, Palmore TN. Hospital water and opportunities for infection prevention. Curr Infect Dis Rep. 2014;16(10):432. https://doi.org/10.1007/s11908-014-0432-yThis article is an excellent review of the main pathogens causing water-associated infections and related prevention measures.

  4. •• Kanamori H, Weber DJ, Rutala WA. Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin Infect Dis. 2016;62:1423–35. https://doi.org/10.1093/cid/ciw122This manuscript reflects some of the most important pathogens associated with water transmission and their relationship to outbreaks.

  5. Bifulco JM, Shirey JJ, Bissonnette GK. Detection of Acinetobacter spp. in rural drinking water supplies. Appl Environ Microbiol. 1989;55:2214–9.

    Article  CAS  Google Scholar 

  6. Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A. Heterotrophic plate counts and drinking-water safety: the significance of HPCs for water quality and human health. WHO Emerging Issues in Water and Infectious Disease Series. London: IWA Publishing; 2003.

    Google Scholar 

  7. Volkow P, Sánchez-Girón F, Rojo-Gutiérrez L, Cornejo-Juárez P. Hospital-acquired waterborne bloodstream infection by Acinetobacter baumannii from tap water: a case report. Infect Dis Clin Pract. 2013;21:405–6.

    Article  Google Scholar 

  8. McDonald LC, Walker M, Carson L, Arduino M, Aguero SM, Gomez P, et al. Outbreak of Acinetobacter spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners. Pediatr Infect Dis J. 1998;17:716–22. https://doi.org/10.1097/00006454-199808000-00011.

    Article  CAS  PubMed  Google Scholar 

  9. Katz MJ, Parrish NM, Belani A, Shah M. Recurrent aeromonas bacteremia due to contaminated well water. Open Forum Infect Dis. 2015;2:ofv142. Published 2015 Oct 20. https://doi.org/10.1093/ofid/ofv142.

  10. Ko WC, Chuang YC. Aeromonas bacteremia: review of 59 episodes. Clin Infect Dis. 1995;20:1298–304. https://doi.org/10.1093/clinids/20.5.1298.

    Article  CAS  PubMed  Google Scholar 

  11. Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. Emerging Aeromonas species infections and their significance in public health. ScientificWorldJournal. 2012;2012:625023. https://doi.org/10.1100/2012/625023.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qu F, Cui EB, Xia GM, He JY, Hong W, Li B, et al. The clinical features and prognosis of Aeromonas septicaemia in hepatic cirrhosis: a report of 50 cases. Zhonghua Nei Ke Za Zhi. 2003;42:840–2.

    PubMed  Google Scholar 

  13. Montaño-Remacha C, Márquez-Cruz MD, Hidalgo-Guzmán P, Sánchez-Porto A, Téllez-Pérez FP. Brote de bacteriemia por Burkholderia cepacia en una unidad de hemodiálisis de Cádiz, 2014 [An outbreak of Burkholderia cepacia bacteremia in a hemodialysis unit, Cadiz, 2014]. Enferm Infecc Microbiol Clin. 2015;33:646–50. https://doi.org/10.1016/j.eimc.2015.02.013.

    Article  PubMed  Google Scholar 

  14. Moreira BM, Leobons MBGO, Pellegrino FLPC, Santos M, Teixeira LM, de Andrade Marques E, et al. Ralstonia pickettii and Burkholderia cepacia complex bloodstream infections related to infusion of contaminated water for injection. J Hosp Infect. 2005;60:51–5. https://doi.org/10.1016/j.jhin.2004.09.036.

    Article  CAS  PubMed  Google Scholar 

  15. Nasser RM, Rahi AC, Haddad MF, Daoud Z, Irani-Hakime N, Almawi WY. Outbreak of Burkholderia cepacia bacteremia traced to contaminated hospital water used for dilution of an alcohol skin antiseptic. Infect Control Hosp Epidemiol. 2004;25:231–9. https://doi.org/10.1086/502384.

    Article  PubMed  Google Scholar 

  16. Chew KL, Cheng B, Lin RTP, Teo JWP. Elizabethkingia anophelis is the dominant Elizabethkingia species found in blood cultures in Singapore. J Clin Microbiol. 2018;56:e01445–17. Published 2018 Feb 22. https://doi.org/10.1128/JCM.01445-17.

  17. Elbadawi LI, Borlaug G, Gundlach K, Monson T, Noble-Wang J, Moulton-Meissner H, et al. A large and primarily community associated outbreak of Elizabethkingia anophelis infections, Wisconsin, 2015–2016. Open Forum Infects Dis. 2016;3(Suppl 1). https://doi.org/10.1093/ofid/ofw195.09.

  18. Perrin A, Larsonneur E, Nicholson AC, Edwards DJ, Gundlach KM, Whitney AM, et al. Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun. 2017;8:15483. Published 2017 May 24. https://doi.org/10.1038/ncomms15483.

  19. Balm MN, Salmon S, Jureen R, Teo C, Mahdi R, Seetoh T, et al. Bad design, bad practices, bad bugs: frustrations in controlling an outbreak of Elizabethkingia meningoseptica in intensive care units. J Hosp Infect. 2013;85:134–40. https://doi.org/10.1016/j.jhin.2013.05.012.

    Article  CAS  PubMed  Google Scholar 

  20. Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992;29 Suppl A:19–24. https://doi.org/10.1093/jac/29.suppl_a.19.

    Article  CAS  PubMed  Google Scholar 

  21. Sanders WE Jr, Sanders CC. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev. 1997;10:220–41.

    Article  Google Scholar 

  22. Ganeswire R, Thong KL, Puthucheary SD. Nosocomial outbreak of Enterobacter gergoviae bacteraemia in a neonatal intensive care unit. J Hosp Infect. 2003;53:292–6. https://doi.org/10.1053/jhin.2002.1371.

    Article  CAS  PubMed  Google Scholar 

  23. Macias AE, Huertas M, de Leon SP, Munoz JM, Chavez AR, Sifuentes-Osornio J, et al. Contamination of intravenous fluids: a continuing cause of hospital bacteremia. Am J Infect Control. 2010;38:217–21. https://doi.org/10.1016/j.ajic.2009.08.015.

    Article  CAS  PubMed  Google Scholar 

  24. Berger P, Barguellil F, Raoult D, Drancourt M. An outbreak of Halomonas phocaeensis sp. nov. bacteraemia in a neonatal intensive care unit. J Hosp Infect. 2007;67:79–85. https://doi.org/10.1016/j.jhin.2007.06.018.

    Article  CAS  PubMed  Google Scholar 

  25. Stevens DA, Johnson N. Mystery solved? Halomonas and dialysis infections. Diagn Microbiol Infect Dis. 2017;88:1–2. https://doi.org/10.1016/j.diagmicrobio.2017.01.021.

    Article  PubMed  Google Scholar 

  26. Stevens DA, Hamilton JR, Johnson N, Kim KK, Lee JS. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center: three new species. Medicine (Baltimore). 2009;88:244–9. https://doi.org/10.1097/MD.0b013e3181aede29.

    Article  Google Scholar 

  27. Moriguchi S, Abe M, Kimura M, Yoshino C, Baba M, Okada C, et al. The diagnosis of Legionella pneumophila Serogroup 5 bacteremic pneumonia during severe neutropenia using loop-mediated isothermal amplification. Intern Med. 2018;57:1045–8. https://doi.org/10.2169/internalmedicine.9810-17.

    Article  PubMed  Google Scholar 

  28. Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev. 2015;28:95–133. https://doi.org/10.1128/CMR.00029-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fields BS, Benson RF, Besser RE. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev. 2002;15:506–26. https://doi.org/10.1128/cmr.15.3.506-526.2002.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Decker BK, Palmore TN. Waterborne pathogen detection: more than just "location, location, location…". Infect Control Hosp Epidemiol. 2014;35:130–1. https://doi.org/10.1086/675067.

    Article  PubMed  Google Scholar 

  31. Stout JE, Muder RR, Mietzner S, et al. Role of environmental surveillance in determining the risk of hospital-acquired legionellosis: a national surveillance study with clinical correlations. Infect Control Hosp Epidemiol. 2007;28:818–24. https://doi.org/10.1086/518754.

    Article  PubMed  Google Scholar 

  32. Bian SN, Zhang LF, Zhang YQ, Yang QW, Wang P, Xu YC, et al. Clinical and laboratory characteristics of patients with nontuberculous mycobacterium bloodstream infection in a tertiary referral hospital in Beijing, China. Chin Med J. 2016;129:2220–5. https://doi.org/10.4103/0366-6999.189920.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Edun B, Shah A, Durkin M, Whitmire M, Patterson-Williams S, Albrecht H, et al. Non-tuberculous mycobacterial bloodstream infections in patients with indwelling vascular catheters - the role of sickle cell anaemia. Infect Dis (Lond). 2017;49:341–6. https://doi.org/10.1080/23744235.2016.1262058.

    Article  Google Scholar 

  34. Tagashira Y, Kozai Y, Yamasa H, Sakurada M, Kashiyama T, Honda H. A cluster of central line-associated bloodstream infections due to rapidly growing nontuberculous mycobacteria in patients with hematologic disorders at a Japanese tertiary care center: an outbreak investigation and review of the literature. Infect Control Hosp Epidemiol. 2015;36:76–80. https://doi.org/10.1017/ice.2014.14.

    Article  PubMed  Google Scholar 

  35. Caroleo B, Malandrino P, Liberto A, Condorelli D, Patanè F, Maiese A, et al. Catheter-related bloodstream infections: a root cause analysis in a series of simultaneous Ochrobactrum anthropi infections. Curr Pharm Biotechnol. 2019;20:609–14. https://doi.org/10.2174/1389201020666190405182025.

    Article  CAS  PubMed  Google Scholar 

  36. Ezzedine H, Mourad M, Van Ossel C, Logghe C, Squifflet JP, Renault F, et al. An outbreak of Ochrobactrum anthropi bacteraemia in five organ transplant patients. J Hosp Infect. 1994;27:35–42. https://doi.org/10.1016/0195-6701(94)90066-3.

    Article  CAS  PubMed  Google Scholar 

  37. Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect. 2012;82:19–24. https://doi.org/10.1016/j.jhin.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  38. Bicking Kinsey C, Koirala S, Solomon B, Rosenberg J, Robinson BF, Neri A, et al. Pseudomonas aeruginosa outbreak in a neonatal intensive care unit attributed to hospital tap water. Infect Control Hosp Epidemiol. 2017;38:801–8. https://doi.org/10.1017/ice.2017.87.

    Article  PubMed  Google Scholar 

  39. Garvey MI, Bradley CW, Holden E. Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control. 2018;46:383–6. https://doi.org/10.1016/j.ajic.2017.10.013.

    Article  PubMed  Google Scholar 

  40. Nasir N, Sayeed MA, Jamil B. Ralstonia pickettii bacteremia: an emerging infection in a tertiary care hospital setting. Cureus. 2019;11:e5084. Published 2019 Jul 5. https://doi.org/10.7759/cureus.5084.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen YY, Huang WT, Chen CP, Sun SM, Kuo FM, Chan YJ, et al. An Outbreak of Ralstonia pickettii bloodstream infection associated with an intrinsically contaminated normal Saline solution. Infect Control Hosp Epidemiol. 2017;38:444–8. https://doi.org/10.1017/ice.2016.327.

    Article  PubMed  Google Scholar 

  42. Dombrowsky M, Kirschner A, Sommer R. PVC-piping promotes growth of Ralstonia pickettii in dialysis water treatment facilities. Water Sci Technol. 2013;68:929–33. https://doi.org/10.2166/wst.2013.332.

    Article  CAS  PubMed  Google Scholar 

  43. Zapardiel J, Blum G, Caramelo C, Fernandez-Roblas R, Rodriguez-Tudela JL, Soriano F. Peritonitis with CDC group IVc-2 bacteria in a patient on continuous ambulatory peritoneal dialysis. Eur J Clin Microbiol Infect Dis. 1991;10:509–11. https://doi.org/10.1007/bf01963939.

    Article  CAS  PubMed  Google Scholar 

  44. Ryan MP, Pembroke JT, Adley CC. Ralstonia pickettii: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect. 2006;62:278–84. https://doi.org/10.1016/j.jhin.2005.08.015.

    Article  CAS  PubMed  Google Scholar 

  45. Ryan MP, Adley CC. Ralstonia spp.: emerging global opportunistic pathogens. Eur J Clin Microbiol Infect Dis. 2014;33:291–304. https://doi.org/10.1007/s10096-013-1975-9.

    Article  CAS  PubMed  Google Scholar 

  46. Åttman E, Korhonen P, Tammela O, Vuento R, Aittoniemi J, Syrjänen J, et al. A Serratia marcescens outbreak in a neonatal intensive care unit was successfully managed by rapid hospital hygiene interventions and screening. Acta Paediatr. 2018;107:425–9. https://doi.org/10.1111/apa.14132.

    Article  PubMed  Google Scholar 

  47. Moulton-Meissner H, Noble-Wang J, Gupta N, Hocevar S, Kallen A, Arduino M. Laboratory replication of filtration procedures associated with Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions. Am J Health Syst Pharm. 2015;72:1285–91. https://doi.org/10.2146/ajhp150141.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Volkow-Fernández P, Ponce de León-Rosales S, Sifuentes-Osornio J, Calva-Mercado JJ, Ruiz-Palacios GM, Cerbón MA. Epidemia de bacteremias primarias por una cepa endémica de Serratia marcescens en una unidad de terapia intensiva [An epidemic of primary bacteremia due to an endemic strain of Serratia marcescens in an intensive care unit]. Salud Publica Mex. 1993;35:440–7.

    PubMed  Google Scholar 

  49. Wasiura J, Segal BH, Mullin KM. Cluster of Sphingomonas paucimobilis bacteremias linked to diversion of intravenous hydromorphone. N Engl J Med. 2019;381:584–5. https://doi.org/10.1056/NEJMc1902973.

    Article  PubMed  Google Scholar 

  50. Perola O, Nousiainen T, Suomalainen S, Aukee S, Kärkkäinen U-M, Kauppinen J, et al. Recurrent Sphingomonas paucimobilis -bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients. J Hosp Infect. 2002;50:m196–201. https://doi.org/10.1053/jhin.2001.1163.

    Article  Google Scholar 

  51. Velázquez-Acosta C, Zarco-Márquez S, Jiménez-Andrade MC, Volkow-Fernández P, Cornejo-Juárez P. Stenotrophomonas maltophilia bacteremia and pneumonia at a tertiary-care oncology center: a review of 16 years. Support Care Cancer. 2018;26:1953–60. https://doi.org/10.1007/s00520-017-4032-x.

    Article  PubMed  Google Scholar 

  52. Kim SH, Cho SY, Kang CI, Seok H, Huh K, Ha Y, et al. Clinical predictors of Stenotrophomonas maltophilia bacteremia in adult patients with hematologic malignancy. Ann Hematol. 2018;97:343–50. https://doi.org/10.1007/s00277-017-3178-4.

    Article  PubMed  Google Scholar 

  53. Chen Y, Suo J, Du M, Chen L, Liu Y, Wang L, et al. Clinical features, outcomes, and risk factors of bloodstream infections due to Stenotrophomonas maltophilia in a tertiary-care hospital of China: a retrospective analysis. Biomed Res Int. 2019;2019:4931501. Published 2019 Dec 9. https://doi.org/10.1155/2019/4931501.

  54. Eb Ebara H, Hagiya H, Haruki Y, Kondo E, Otsuka F. Clinical characteristics of Stenotrophomonas maltophilia bacteremia: a regional report and a review of a Japanese case series. Intern Med. 2017;56:137–42. https://doi.org/10.2169/internalmedicine.56.6141.

    Article  Google Scholar 

  55. Zmeter C, Tabaja H, Sharara AI, Kanj SS. Non-O1, non-O139 Vibrio cholerae septicemia at a tertiary care center in Beirut, Lebanon; a case report and review. J Infect Public Health. 2018;11:601–4. https://doi.org/10.1016/j.jiph.2018.01.001.

    Article  PubMed  Google Scholar 

  56. Maraki S, Christidou A, Anastasaki M, Scoulica E. Non-O1, non-O139 Vibrio cholerae bacteremic skin and soft tissue infections. Infect Dis (Lond). 2016;48:171–6. https://doi.org/10.3109/23744235.2015.1104720.

    Article  CAS  Google Scholar 

  57. Fàbrega A, Vila J. Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance. Enferm Infecc Microbiol Clin. 2012;30:24–32. https://doi.org/10.1016/j.eimc.2011.07.017.

    Article  PubMed  Google Scholar 

  58. From the Centers for Disease Control. Yersinia enterocolitica bacteremia and endotoxin shock associated with red blood cell transfusions--United States, 1991. JAMA. 1991;265:2174–5.

  59. Centers for Disease Control and Prevention (CDC). Red blood cell transfusions contaminated with Yersinia enterocolitica--United States, 1991–1996, and initiation of a national study to detect bacteria-associated transfusion reactions. MMWR Morb Mortal Wkly Rep. 1997;46:553–5.

    Google Scholar 

  60. Boyce JM, Pittet D, Healthcare Infection Control Practices Advisory Committee. Society for Healthcare Epidemiology of America. Association for Professionals in Infection Control. Infectious Diseases Society of America. Hand Hygiene Task Force. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect Control Hosp Epidemiol. 2002;23(12 Suppl):S3–S40. https://doi.org/10.1086/503164.

    Article  PubMed  Google Scholar 

  61. Sehulster LM, Chinn RYW, Arduino MJ, Carpenter J, Donlan R, Ashford D, et al. Recommendations from CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). Chicago: American Society for Healthcare Engineering/American Hospital Association; 2004. https://www.cdc.gov/infectioncontrol/pdf/guidelines/environmental-guidelines-P.pdf

    Google Scholar 

  62. Macías AE, Monroy R, Muñoz JM, Medina H, Ponce de León S. Cloración y contaminación bacteriana. Aguas turbulentas en los hospitales. [Chlorination and bacterial contamination. Hospitals with troubled waters]. Rev Investig Clin. 2006;58:470–4.

    Google Scholar 

  63. Bull RJ, Birnbaum LS, Cantor KP, Rose JB, Butterworth BE, Pegram R, et al. Water chlorination: essential process or cancer hazard? Fundam Appl Toxicol. 1995;28:155–66. https://doi.org/10.1006/faat.1995.1156.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cornejo-Juárez M.D., M.Sc.

Ethics declarations

Conflict of Interest

Gómez-Gómez B declares that she has no conflict of interest. Volkow-Fernández P declares that she has no conflict of interest. Cornejo-Juárez P declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Treatment and Prevention of Hospital Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gómez, B., Volkow-Fernández, P. & Cornejo-Juárez, P. Bloodstream Infections Caused by Waterborne Bacteria. Curr Treat Options Infect Dis 12, 332–348 (2020). https://doi.org/10.1007/s40506-020-00234-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-020-00234-5

Keywords

Navigation