Skip to main content

Advertisement

Log in

Evaluation of OPAT in the Age of Antimicrobial Stewardship

  • Antimicrobial Stewardship (M Stevens, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of review

Antimicrobial stewardship and outpatient parenteral antimicrobial therapy (OPAT) collide with the newest Joint Commission requirements for outpatient antimicrobial stewardship. The purpose of this paper was to present key stewardship areas applicable to OPAT and review the data behind them.

Recent findings

Data on these topics is emerging. Long treatment durations are being challenged and oral routes are garnering evidence for treatment of traditionally intravenous-only regimens. Stability information and incorporation of pharmacokinetic and pharmacodynamic properties may lead to use of continuous infusions, once daily dosing, or long-acting lipoglycopeptides. Different models for patient follow-up, frequency of monitoring, and adverse effect profiles can be used. As the popularity and necessity of OPAT and stewardship programs increase, there is opportunity for multidisciplinary collaboration.

Summary

While there are many overlapping stewardship principles in OPAT, there may be appropriately discordant principles in this unique scenario as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77. https://doi.org/10.1093/cid/ciw118.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antimicrobial stewardship in ambulatory health care. R3 Report: Requirement, Rationale, Reference. The Joint Commission. June 20, 2019; Issue 23. Available at: https://www.jointcommission.org/-/media/tjc/documents/standards/r3-reports/r3_23_antimicrobial_stewardship_amb_6_14_19_final2.pdf Accessed 2/17/20.

  3. Chapman AL, Patel S, Horner C, et al. Updated good practice recommendations for outpatient parenteral antimicrobial therapy (OPAT) in adults and children in the UK. JAC Antimicrob Resist. 2019. https://doi.org/10.1093/jacamr/dlz026.

  4. Shrestha NK, Bhaskaran A, Scalera NM, Schmitt SK, Rehm SJ, Gordon SM. Contribution of infectious disease consultation toward the care of inpatients being considered for community-based parenteral anti-infective therapy: contribution of predischarge ID consult. J Hosp Med. 2012;7(5):365–9. https://doi.org/10.1002/jhm.1902.

    Article  PubMed  Google Scholar 

  5. • Seaton RA, Ritchie ND, Robb F, Stewart L, White B, Vallance C. From ‘OPAT’ to “COpAT”: implications of: the OVIVA study for ambulatory management of bone and joint infection. J Antimicrob Chemother. 2019;74:2119–21. https://doi.org/10.1093/jac/dkz122 An editorial that builds the case for including long term oral antimicrobials into the OPAT program structure. As more data supporting oral courses for historically intravenous-treated infections emerge, this will become more common practice.

  6. Tice AD, Rehm SJ, Dalovisio JR, Bradley JS, Martinelli LP, Graham DR, et al. Practice guidelines for outpatient parenteral antimicrobial therapy. Clin Infect Dis. 2004;38:1651–72. https://doi.org/10.1093/cid/ciy745.

    Article  PubMed  Google Scholar 

  7. • Norris AH, Shrestha NK, Allison GM, et al. 2018 Infectious Diseases Society of America clinical practice guidelines for the management of outpatient parenteral antimicrobial therapy. Clin Infect Dis. 2019;68:e1–e35. https://doi.org/10.1093/cid/ciy867 The most recent IDSA OPAT guidelines. These guidelines build on previous versions, using the GRADE criteria to answer specific questions.

  8. Oliveira PR, Carvalho VC, Cimerman S, Lima ALM. Diretrizes Brasileiras para Terapia Antimicrobiana Parenteral Ambulatorial group Recommendations for outpatient parenteral antimicrobial therapy in Brazil. Braz J Infect Dis. 2017;21:648–55. https://doi.org/10.1016/j.bjid.2017.06.006.

    Article  PubMed  Google Scholar 

  9. Chary A, Tice AD, Martinelli LP, Liedtke LA, Plantenga MS, Strausbaugh LJ. Infectious Diseases Society of America Emerging Infections Network. Experience of infectious diseases consultants with outpatient parenteral antimicrobial therapy: results of an emerging infections network survey. Clin Infect Dis. 2006;43:1290–5. https://doi.org/10.1086/508456.

    Article  PubMed  Google Scholar 

  10. •• Hamad Y, Lane MA, Beekmann SE, Polgreen PM, Keller SC. Perspectives of United States–based infectious diseases physicians on outpatient parenteral antimicrobial therapy practice. Open Forum Infect Dis. 2019;6:ofz363. https://doi.org/10.1093/ofid/ofz363 An updated survey of ID physicians participating in OPAT. This highlights areas for improvement and vulnerabilities.

  11. Lane MA, Marschall J, Beekmann SE, Polgreen PM, Banerjee R, Hersh AL, et al. Outpatient parenteral antimicrobial therapy practices among adult infectious disease physicians. Infect Control Hosp Epidemiol. 2014;35:839–44. https://doi.org/10.1086/676859.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mitchell ED, Czoski Murray C, Meads D, Minton J, Wright J, Twiddy M. Clinical and cost-effectiveness, safety and acceptability of community intravenous antibiotic service models: CIVAS systematic review. BMJ Open. 2017;7:e013560. https://doi.org/10.1136/bmjopen-2016-013560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muldoon EG, Allison GM, Gallagher D, Snydman DR, Bergin C. Outpatient parenteral antimicrobial therapy (OPAT) in the Republic of Ireland: results of a national survey. Eur J Clin Microbiol Infect Dis. 2013;32:1465–70. https://doi.org/10.1007/s10096-013-1899-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Briquet C, Cornu O, Servais V, Blasson C, Vandeleene B, Yildiz H, et al. Clinical characteristics and outcomes of patients receiving outpatient parenteral antibiotic therapy in a Belgian setting: a single-center pilot study. Acta Clin Belg. 2019;25:1–9. https://doi.org/10.1080/17843286.2019.1608396.

    Article  Google Scholar 

  15. Oliveira PR, da Silva FC, Carvalho VC, Giovani AM, Reis RS, Beraldo M, et al. Outpatient parenteral antimicrobial therapy for orthopedic infections - a successful public healthcare experience in Brazil. Braz J Infect Dis. 2016;20:272–5. https://doi.org/10.1016/j.bjid.2016.03.005.

    Article  PubMed  Google Scholar 

  16. •• Berrevoets MAH, Oerlemans AJM, Tromp M, Kullberg BJ, Ten Oever J, Schouten JA, et al. Quality of outpatient parenteral antimicrobial therapy (OPAT) care from the patient’s perspective: a qualitative study. BMJ Open. 2018;8:e024564. https://doi.org/10.1136/bmjopen-2018-024564 While data is emerging on the medical and institutional benefits of OPAT, this paper introduces the patients’ perspective.

  17. Madaline T, Nori P, Mowrey W, et al. Bundle in the Bronx: impact of a transition-of-care outpatient parenteral antibiotic therapy bundle on all-cause 30-day hospital readmissions. Open Forum Infect Dis. 2017:4(2). https://doi.org/10.1093/ofid/ofx097.

  18. Mansour O, Heslin J, Townsend JL. Impact of the implementation of a nurse-managed outpatient parenteral antibiotic therapy (OPAT) system in Baltimore: a case study demonstrating cost savings and reduction in re-admission rates. J Antimicrob Chemother. 2018;73(11):3181–8. https://doi.org/10.1093/jac/dky294.

    Article  CAS  PubMed  Google Scholar 

  19. Yan M, Elligsen M, Simor AE, Daneman N. Patient characteristics and outcomes of outpatient parenteral antimicrobial therapy: a retrospective study. Can J Infect Dis Med Microbiol. 2016;2016:8435257. https://doi.org/10.1155/2016/8435257.

    Article  PubMed  PubMed Central  Google Scholar 

  20. •• Durojaiye OC, Kritsotakis EI, Johnston P, Kenny T, Ntziora F, Cartwright K. Developing a risk prediction model for 30-day unplanned hospitalization in patients receiving outpatient parenteral antimicrobial therapy. Clin Microbiol Infect. 2019;25(7):905.e1–7. https://doi.org/10.1016/j.cmi.2018.11.009 The authors develop a potential tool for identifying patients who are more likely to get readmitted during OPAT therapy, to aid in proactive intervention to prevent readmission.

  21. Durojaiye OC, Bell H, Andrews D, Ntziora F, Cartwright K. Clinical efficacy, cost analysis and patient acceptability of outpatient parenteral antibiotic therapy (OPAT): a decade of Sheffield (UK) OPAT service. Int J Antimicrob Agents. 2018;51(1):26–32. https://doi.org/10.1016/j.ijantimicag.2017.03.016.

    Article  CAS  PubMed  Google Scholar 

  22. Barr DA, Semple L, Seaton RA. Outpatient parenteral antimicrobial therapy (OPAT) in a teaching hospital-based practice: a retrospective cohort study describing experience and evolution over 10 years. Int J Antimicrob Agents. 2012;39(5):407–13. https://doi.org/10.1016/j.ijantimicag.2012.01.016.

    Article  CAS  PubMed  Google Scholar 

  23. Chan M, Ooi CK, Wong J, Zhong L, Lye D. Role of outpatient parenteral antibiotic therapy in the treatment of community acquired skin and soft tissue infections in Singapore. BMC Infect Dis. 2017;17(1):474. https://doi.org/10.1186/s12879-017-2569-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seaton RA, Sharp E, Bezlyak V, Weir CJ. Factors associated with outcome and duration of therapy in outpatient parenteral antibiotic therapy (OPAT) patients with skin and soft-tissue infections. Int J Antimicrob Agents. 2011;38(3):243–8. https://doi.org/10.1016/j.ijantimicag.2011.05.008.

    Article  CAS  PubMed  Google Scholar 

  25. Townsend J, Keller S, Tibuakuu M, Thakker S, Webster B, Siegel M, et al. Outpatient parenteral therapy for complicated Staphylococcus aureus infections: a snapshot of processes and outcomes in the real world. Open Forum Infect Dis. 2018;5(11):ofy274. https://doi.org/10.1093/ofid/ofy274.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cervera C, del Río A, García L, Sala M, Almela M, Moreno A, et al. Hospital Clinic Endocarditis Study Group Efficacy and safety of outpatient parenteral antibiotic therapy for infective endocarditis: a ten-year prospective study. Enferm Infecc Microbiol Clin. 2011;29(8):587–92. https://doi.org/10.1016/j.eimc.2011.05.007.

    Article  PubMed  Google Scholar 

  27. Chambers ST, Basevi A, Gallagher K, Carswell-Moyna A, Isenman H, Pithie A, et al. Outpatient parenteral antimicrobial therapy (OPAT) in Christchurch: 18 years on. N Z Med J. 2019;132(1501):21–32.

    PubMed  Google Scholar 

  28. Means L, Bleasdale S, Sikka M, Gross AE. Predictors of hospital readmission in patients receiving outpatient parenteral antimicrobial therapy. Pharmacotherapy. 2016;36(8):934–9. https://doi.org/10.1002/phar.1799.

    Article  PubMed  Google Scholar 

  29. Saini E, Ali M, Du P, Crook T, Zurlo J. Early infectious diseases outpatient follow-up of outpatient parenteral antimicrobial therapy patients reduces 30-day readmission. Clin Infect Dis. 2019;69:865–9. https://doi.org/10.1093/cid/ciz073.

    Article  PubMed  Google Scholar 

  30. Beieler AM, Dellit TH, Chan JD, Dhanireddy S, Enzian LK, Stone TJ, et al. Lynch JB Successful implementation of outpatient parenteral antimicrobial therapy at a medical respite facility for homeless patients. J Hosp Med. 2016;11(8):531–5. https://doi.org/10.1002/jhm.2597.

    Article  PubMed  Google Scholar 

  31. Bianchini ML, Kenney RM, Lentz R, Zervos M, Malhotra M, Davis SL. Discharge delays and costs associated with outpatient parenteral antimicrobial therapy for high priced antibiotics. Clin Infect Dis. 2019. ciz1076. https://doi.org/10.1093/cid/ciz1076

  32. Allison GM, Muldoon EG, Kent DM, Paulus JK, Ruthazer R, Ren A. Snydman DR Prediction model for 30-day hospital readmissions among patients discharged receiving outpatient parenteral antibiotic therapy. Clin Infect Dis. 2014;58(6):812–9. https://doi.org/10.1093/cid/cit920.

    Article  CAS  PubMed  Google Scholar 

  33. Hatcher J, Costelloe C, Cele R, Viljanen A, Samarasinghe D, Satta G, et al. Gilchrist M Factors associated with successful completion of outpatient parenteral antibiotic therapy (OPAT): a 10-year review from a large West London service. Int J Antimicrob Agents. 2019;54(2):207–14. https://doi.org/10.1016/j.ijantimicag.2019.04.008.

    Article  CAS  PubMed  Google Scholar 

  34. Huang V, Ruhe JJ, Lerner P, Fedorenko M. Risk factors for readmission in patients discharged with outpatient parenteral antimicrobial therapy: a retrospective cohort study. BMC Pharmacol Toxicol. 2018;19(1):50. https://doi.org/10.1186/s40360-018-0240-3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee B, Tam I, Weigel B 4th, Breeze JL, Paulus JK, Nelson J, et al. Comparative outcomes of β-lactam antibiotics in outpatient parenteral antibiotic therapy: treatment success, readmissions and antibiotic switches. J Antimicrob Chemother. 2015;70(8):2389–96. https://doi.org/10.1093/jac/dkv130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shrestha NK, Kim SL, Rehm SJ, Everett A, Gordon SM. Emergency department visits during outpatient parenteral antimicrobial therapy: a retrospective cohort study. J Antimicrob Chemother. 2018;73(7):1972–7. https://doi.org/10.1093/jac/dky133.

    Article  CAS  PubMed  Google Scholar 

  37. Psaltikidis EM, Silva END, Bustorff-Silva JM, Moretti ML, Resende MR. Economic evaluation of outpatient parenteral antimicrobial therapy: a systematic review. Expert Rev Pharmacoecon Outcomes Res. 2017;17(4):355–75. https://doi.org/10.1080/14737167.2017.1360767.

    Article  PubMed  Google Scholar 

  38. Wee LE, Sundarajoo M, Quah WF, Farhati A, Huang JY, Chua YY. Health-related quality of life and its association with outcomes of outpatient parenteral antibiotic therapy. Eur J Clin Microbiol Infect Dis. 2019. https://doi.org/10.1007/s10096-019-03787-6.

  39. Hoggard J, Saad T, Schon D, Vesely TM, Royer T. American Society of Diagnostic and Interventional Nephrology, Clinical Practice Committee, Association for Vascular Access Guidelines for venous access in patients with chronic kidney disease. A position statement from the American Society of Diagnostic and Interventional Nephrology, Clinical Practice Committee, and the Association for Vascular Access. Semin Dial. 2008;21:186–91. https://doi.org/10.1111/j.1525-139X.2008.00421.x.

    Article  PubMed  Google Scholar 

  40. Stryjewski ME, Szczech LA, Benjamin DK Jr, et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis. 2007;44:190–6. https://doi.org/10.1086/510386.

    Article  CAS  PubMed  Google Scholar 

  41. Goh JH, Lee SY, Ooi ST, Lee Soon-U L, Hee KH, Renaud CL. Post-hemodialysis dosing of 1 vs. 2 g of ceftazidime in anuric end-stage renal disease patients on low-flux dialysis and its pharmacodynamic implications on clinical use. Hemodial Int. 2016;20:253–60. https://doi.org/10.1111/hdi.12377.

    Article  PubMed  Google Scholar 

  42. Descombes E, Martins F, Hemett OM, Erard V, Chuard C. Three-times-weekly, post-dialysis cefepime therapy in patients on maintenance hemodialysis: a retrospective study. BMC Pharmacol Toxicol. 2016;17:4. https://doi.org/10.1186/s40360-016-0048-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmaldienst S, Traunmuller F, Burgmann H, et al. Multiple-dose pharmacokinetics of cefepime in long-term hemodialysis with high-flux membranes. Eur J Pharmacol. 2000;56:61–4. https://doi.org/10.1007/s002280050721.

    Article  CAS  Google Scholar 

  44. Haselden M, Leach M, Bohm N. Daptomycin dosing strategies in patients receiving thrice-weekly intermittent hemodialysis. Ann Pharmacother. 2013;47:1342–7. https://doi.org/10.1177/1060028013503110.

    Article  CAS  PubMed  Google Scholar 

  45. Ueng YF, Wang HJ, Wu SC, Ng YY. A practical thrice weekly ertapenem in hemodialysis patients. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.01427-19.

  46. Hsaiky LM, Salinitri FD, Wong J, et al. Pharmacokinetics and investigation of optimal dose ertapenem in intermittent hemodialysis patients. Nephrol Dial Transplant. 2019;34:1766–72. https://doi.org/10.1093/ndt/gfy166.

    Article  PubMed  Google Scholar 

  47. •• IDSA E-OPAT. Handbook of outpatient parenteral antimicrobial therapy for infectious diseases, 3rd edition. 2016 Available at: https://www.idsociety.org/opat-ehandbook/ Accessed 1/18/20.An invaluable resource for those new to OPAT including many tables and figures for references. This handbook reviews the basics of OPAT programs, practices, and medication infusion devices, among others.

  48. Newman JV, Zhou J, Izmailyan S, Tsai L. Randomized, double-blind, placebo-controlled studies of the safety and pharmacokinetics of single and multiple ascending doses of eravacycline. Antimicrob Agents Chemother. 2018;62:e01174–18. https://doi.org/10.1128/AAC.01174-18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hughes S, Chin HY, Heard KL, et al. Once-daily tigecycline for outpatient parenteral antibiotic therapy: a single-center observational study. JAC-Antimicrob Resist 2019; dlz085. https://doi.org/10.1093/jacamr/dlz085.

  50. Jones BM, Huelfer K, Bland CM. Clinical and safety evaluation of continuously infused ceftolozane/tazobactam in the outpatient setting. Open Forum Infect Dis 2020; ofaa014. https://doi.org/10.1093/pfod/ofaa014.

  51. Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guidelines and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm; zxaa036. https://doi.org/10.1093/ajhp/zxaa036.

  52. Hao J-J, Chen H, Zhou J-X. Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;47(1):28–35. https://doi.org/10.1016/j.ijantimicag.2015.10.019.

    Article  CAS  PubMed  Google Scholar 

  53. Ingram PR, Lye DC, Fisher DA, Goh W-P, Tam VH. Nephrotoxicity of continuous versus intermittent infusion of vancomycin in outpatient parenteral antimicrobial therapy. Int J Antimicrob Agents. 2009;34(6):570–4. https://doi.org/10.1016/j.ijantimicag.2009.07.011.

    Article  CAS  PubMed  Google Scholar 

  54. Mahieu LM, De Dooy JJ, De Muynck AO, Van Melckebeke G, Ieven MM, Van Reempts PJ. Microbiology and risk factors for catheter exit-site and -hub colonization in neonatal intensive care unit patients. Infect Control Hosp Epidemiol. 2001;22(6):357–62. https://doi.org/10.1086/501913.

    Article  CAS  PubMed  Google Scholar 

  55. Teo J, Liew Y, Lee W, Kwa AL-H. Prolonged infusion versus intermittent boluses of β-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents. 2014;43(5):403–11. https://doi.org/10.1016/j.ijantimicag.2014.01.027.

    Article  CAS  PubMed  Google Scholar 

  56. • Tan SJ, Ingram PR, Rothnie AJ, et al. Successful outpatient parenteral antibiotic therapy delivery via telemedicine. J Antimicrob Chemother. 2017;72(10):2898–901. https://doi.org/10.1093/jac/dkx203 This study offers a unique solution to areas with limited resources or clinicians to allow for in-person follow-up visits and monitoring.

  57. Tobudic S, Forstner C, Burgmann H, Lagler H, Ramharter M, Steininger C, et al. Dalbavancin as primary and sequential treatment for gram-positive infective endocarditis: 2-year experience at the general hospital of Vienna. Clin Infect Dis. 2018;67:795–8. https://doi.org/10.1093/cid/ciy279.

    Article  CAS  PubMed  Google Scholar 

  58. Johnson JA, Feeney ER, Kubiak DW, Corey GR. Prolonged use of oritavancin for vancomycin-resistant Enterococcus faecium prosthetic valve endocarditis. Open Forum Infect Dis. 2015;2:ofv156. https://doi.org/10.1093/ofid/ofv156.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morata L, Cobo J, Fernandez-Sampedro M. Safety and efficacy of prolonged use of dalbavancin in bone and joint infections. Antimicrob Agents Chemother. 2019;63:e02280–18. https://doi.org/10.1128/AAC.02280-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morrisette T, Miller MA, Montague BT, Barber GR, McQueen R, Krsak M. On- and off-label utilization of dalbavancin and oritavancin for gram-positive infections. J Antimicrob Chemother. 2019;74:2405–16. https://doi.org/10.1093/jac/dkz162.

    Article  CAS  PubMed  Google Scholar 

  61. Chastain DB, Davis A. Treatment of chronic osteomyelitis with multidose oritavancin: a case series and literature review. Int J Antimicrob Agents. 2019;53:429–34. https://doi.org/10.1016/j.ijantimicag.2018.11.023.

    Article  CAS  PubMed  Google Scholar 

  62. Rappo U, Puttagunta S, Shevchenko V, et al. Dalbavancin for the treatment of osteomyelitis in adult patients: a randomized clinical trial of efficacy and safety. Open Forum Infect Dis. 2018;6:ofy331. https://doi.org/10.1093/ofid/ofy331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jorgensen SCJ, Lagnf AM, Bhatia S, Shamim MD, Rybak MJ. Sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteremia: one step closer. J Antimicrob Chemother. 2019;74:489–98. https://doi.org/10.1093/jac/dky452.

    Article  CAS  PubMed  Google Scholar 

  64. Stets R, Popescu M, Gonong JR, Mitha I, Nseir W, Madej A, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019;380:517–27. https://doi.org/10.1056/NEJMoa1800201.

    Article  CAS  PubMed  Google Scholar 

  65. Alexander E, Goldberg L, Das AF, et al. Oral lefamulin vs moxifloxacin for early clinical response among adults with community-acquired bacterial pneumonia: the LEAP 2 randomized clinical trial. JAMA. 2019;322:1661–71. https://doi.org/10.1001/jama.2019.15468.

    Article  CAS  PubMed Central  Google Scholar 

  66. Tamma PD, Conley AT, Cosgrove SE, Harris AD, Lautenbach E, Amoah J, et al. Antibacterial Resistance Leadership Group Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Intern Med. 2019;179:316–23. https://doi.org/10.1001/jamainternmed.2018.6226.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Punjabi C, Tien V, Meng L, Deresinski S, Holubar M. Oral fluoroquinolone or trimethoprim-sulfamethoxazole vs. β-lactams as step-down therapy for Enterobacteriaceae bacteremia: systematic review and meta-analysis. Open Forum Infect Dis 2019;ofz364. https://doi.org/10.1093/ofid/ofz364.

  68. Iverson K, Ihlemann N, Gill SU, et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med. 2019;380:415–24. https://doi.org/10.1056/nejmoa1808312.

    Article  CAS  Google Scholar 

  69. Li HK, Rombach I, Zambellas R, Walker AS, Mc Nally M, Atkins BL, et al. Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med. 2019;380:425–36. https://doi.org/10.1056/NEJMoa1710926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hepburn MJ, Dooley DP, Skidmore PJ, Ellis MW, Starnes WF, Hasewinkle WC. Comparison of short-course (5 days) and standard (10 days) treatment for uncomplicated cellulitis. Arch Intern Med. 2004;164(15):1669–74. https://doi.org/10.1001/archinte.164.15.1669.

    Article  CAS  PubMed  Google Scholar 

  71. Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA : the journal of the American Medical Association. 2013;309(6):559–69. https://doi.org/10.1001/jama.2013.241.

    Article  CAS  PubMed  Google Scholar 

  72. Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14(8):696–705. https://doi.org/10.1016/S1473-3099(14)70737-6.

    Article  CAS  PubMed  Google Scholar 

  73. Cranendonk, et al. Antibiotic treatment for 6 days versus 12 days in patients with severe cellulitis: a multicentre randomised, double-blind, placebo-controlled, non-inferiority trial. Clin Microbiol Infect. 2019. https://doi.org/10.1016/j.cmi.2019.09.019.

  74. el Moussaoui R, Roede BM, Speelman P, Bresser P, Prins JM, Bossuyt PM. Short-course antibiotic treatment in acute exacerbations of chronic bronchitis and COPD: a meta-analysis of double-blind studies. Thorax. 2008;63(5):415–22. https://doi.org/10.1136/thx.2007.090613.

    Article  PubMed  Google Scholar 

  75. Yahav D, Franceschini E, Koppel F, et al. Seven versus fourteen days of antibiotic therapy for uncomplicated gram-negative bacteremia: a non-inferiority randomized controlled trial. Clin Infect Dis. 2018;69:1091–8. https://doi.org/10.1093/cid/ciy1054.

    Article  CAS  Google Scholar 

  76. Harris JA, Kolokathis A, Campbell M, Cassell GH, Hammerschlag MR. Safety and efficacy of azithromycin in the treatment of community-acquired pneumonia in children. Pediatr Infect Dis J. 1998;17(10):865–71. https://doi.org/10.1097/00006454-199810000-00004.

    Article  CAS  PubMed  Google Scholar 

  77. Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162(2 Pt 1):505–11. https://doi.org/10.1164/ajrccm.162.2.9909095.

    Article  CAS  PubMed  Google Scholar 

  78. Pakistan multicentre amoxycillin short course therapy pneumonia study group. Clinical efficacy of 3 days versus 5 days of oral amoxicillin for treatment of childhood pneumonia: a multicentre double-blind trial. Lancet. 2002;360(9336):835–41. https://doi.org/10.1016/S0140-6736(02)09994-4.

    Article  Google Scholar 

  79. Dunbar LM, Khashab MM, Kahn JB, Zadeikis N, Xiang JX, Tennenberg AM. Efficacy of 750-mg, 5-day levofloxacin in the treatment of community-acquired pneumonia caused by atypical pathogens. Curr Med Res Opin. 2004;20(4):555–63.

    Article  CAS  Google Scholar 

  80. el Moussaoui R, de Borgie CA, van den Broek P, Hustinx WN, Bresser P, van den Berk G, et al. Prins JM Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study. BMJ. 2006;332(7554):1355.

    Article  Google Scholar 

  81. Zhao X, Wu JF, Xiu QY, Wang C, Zhang DP, Huang JA, et al. A randomized controlled clinical trial of levofloxacin 750 mg versus 500 mg intravenous infusion in the treatment of community-acquired pneumonia. Diagn Microbiol Infect Dis. 2014;80:141–7. https://doi.org/10.1016/j.diagmicrobio.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  82. Greenberg D, Givon-Lavi N, Sadaka Y, Ben-Shimol S, Bar-Ziv J, Dagan R. Short-course antibiotic treatment for community-acquired alveolar pneumonia in ambulatory children: a double-blind, randomized, placebo-controlled trial. Pediatr Infect Dis J. 2014;33:136–42. https://doi.org/10.1097/INF.0000000000000023.

    Article  PubMed  Google Scholar 

  83. Uranga A, Espana PP, Bilbao A, et al. Duration of antibiotic treatment in community-acquired pneumonia: a multicenter randomized clinical trial. JAMA Intern Med. 2016;176:1257–65. https://doi.org/10.1001/jamainternmed.2016.3633.

    Article  PubMed  Google Scholar 

  84. Dinh A, Davido B, Bouchand F, Duran C, Ropers J, Cremieux AC. Honey, I shrunk the antibiotic therapy. Clin Infect Dis. 2018;66:1981–2. https://doi.org/10.1093/cid/ciy047.

    Article  PubMed  Google Scholar 

  85. Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, et al. STOP-IT Trial Investigators Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372:1996–2005. https://doi.org/10.1056/NEJMoa1411162.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Montravers P, Tubach F, Lescot T, Veber B, Esposito-Farèse M, Seguin P, et al. DURAPOP Trial Group Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med. 2018. https://doi.org/10.1007/s00134-018-5088-x.

  87. Aguilar-Guisado M, Espigado I, Martin-Pena A, et al. Optimisation of empirical antimicrobial therapy in patients with haematological malignancies and febrile neutropenia (how long study): an open-label, randomised, controlled phase 4 trial. Lancet Haematol. 2017;4(12):e573–e83. https://doi.org/10.1016/S2352-3026(17)30211-9.

    Article  PubMed  Google Scholar 

  88. Le Clech L, Talarmin JP, Couturier MA, et al. Early discontinuation of empirical antibacterial therapy in febrile neutropenia: the ANTIBIOSTOP study. Infect Dis Ther. 2018;50:539–49. https://doi.org/10.1080/23744235.2018.1438649.

    Article  Google Scholar 

  89. Bernard L, Dinh A, Ghout I, Simo D, Zeller V, Issartel B, et al. Duration of Treatment for Spondylodiscitis (DTS) study group Antibiotic treatment for 6 weeks versus 12 weeks in patients with pyogenic vertebral osteomyelitis: an open-label, non-inferiority, randomised, controlled trial. Lancet. 2015;385:875–82. https://doi.org/10.1016/S0140-6736(14)61233-2.

    Article  CAS  PubMed  Google Scholar 

  90. Tone A, Nguyen S, Devemy F, et al. Six-week versus twelve-week antibiotic therapy for nonsurgically treated diabetic foot osteomyelitis: a multicenter open-label controlled randomized study. Diabetes Care. 2015;38:302–7. https://doi.org/10.2337/dc14-1514.

    Article  PubMed  Google Scholar 

  91. Benkabouche M, Racloz G, Spechbach H, Lipsky BA, Gaspoz JM, Uçkay I. Four versus six weeks of antibiotic therapy for osteoarticular infections after implant removal: a randomized trial. J Antimicrob Chemother. 2019;74:2394–9. https://doi.org/10.1093/jac/dkz202.

    Article  CAS  PubMed  Google Scholar 

  92. Jernelius H, Zbornik J, Bauer CA. One or three weeks’ treatment of acute pyelonephritis? A double-blind comparison, using a fixed combination of pivampicillin plus pivmecillinam. Acta Med Scand. 1988;223(5):469–77. https://doi.org/10.1111/j.0954-6820.1988.tb15899.x.

    Article  CAS  PubMed  Google Scholar 

  93. de Gier R, Karperien A, Bouter K, Zwinkels M, Verhoef J, Knol W, et al. Hoepelman IM A sequential study of intravenous and oral fleroxacin for 7 or 14 days in the treatment of complicated urinary tract infections. Int J Antimicrob Agents. 1995;6(1):27–30.

    Article  Google Scholar 

  94. Talan DA, Stamm WE, Hooton TM, Moran GJ, Burke T, Iravani A, et al. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis pyelonephritis in women: a randomized trial. J Am Med Assoc. 2000;283:1583–90. https://doi.org/10.1001/jama.283.12.1583.

    Article  CAS  Google Scholar 

  95. Klausner HA, Brown P, Peterson J, Kaul S, Khashab M, Fisher AC. Kahn JB A trial of levofloxacin 750 mg once daily for 5 days versus ciprofloxacin 400 mg and/or 500 mg twice daily for 10 days in the treatment of acute pyelonephritis. Curr Med Res Opin. 2007;23(11):2637–45. https://doi.org/10.1185/030079907x233340.

    Article  CAS  PubMed  Google Scholar 

  96. Peterson J, Kaul S, Khashab M, Fisher AC, Kahn JB. A double-blind, randomized comparison of levofloxacin 750 mg once-daily for five days with ciprofloxacin 400/500 mg twice-daily for 10 days for the treatment of complicated urinary tract infections and acute pyelonephritis. Urology. 2008;71(1):17–22. https://doi.org/10.1016/S0140-6736(02)09994-4.

    Article  PubMed  Google Scholar 

  97. Sandberg T, Skoog G, Hermansson AB, Kahlmeter G, Kuylenstierna N, Lannergård A, et al. Ciprofloxacin for 7 days versus 14 days in women with acute pyelonephritis: a randomised, open-label and double-blind, placebo-controlled, non-inferiority trial. Lancet. 2012;380:484–90. https://doi.org/10.1016/S0140-6763(12)60608-4.

    Article  CAS  PubMed  Google Scholar 

  98. Dinh A, Davido B, Etienne M, Bouchand F, Raynaud-Lambinet A, Aslangul-Castier E, et al. Is 5 days of oral fluoroquinolone enough for acute uncomplicated pyelonephritis? The DTP randomized trial. Eur J Clin Microbiol Infect Dis. 2017;36:1443–8. https://doi.org/10.1007/s10096-017-2951-6.

    Article  CAS  PubMed  Google Scholar 

  99. Gjika E, Beaulieu JY, Vakalopoulos K, et al. Two weeks versus four weeks of antibiotic therapy after surgical drainage for native joint bacterial arthritis: a prospective, randomised, non-inferiority trial. Ann Rheum Dis. 2019;78:1114–21. https://doi.org/10.1136/annrheumdis-2019-215116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. PneumA Trial Group Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA : the journal of the American Medical Association. 2003;290(19):2588–98.

    Article  CAS  Google Scholar 

  101. Capellier G, Mockly H, Charpentier C, Annane D, Blasco G, Desmettre T, et al. Papazian L Early-onset ventilator-associated pneumonia in adults randomized clinical trial: comparison of 8 versus 15 days of antibiotic treatment. PLoS One. 2012;7(8):e41290. https://doi.org/10.1371/journal.pone.0041290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wald-Dickler N, Spellberg B. Short-course antibiotic therapy-replacing Constantine units with “shorter is better.”. Clin Infect Dis. 2019;69:1476–9. https://doi.org/10.1093/cid/ciy1134.

    Article  PubMed  PubMed Central  Google Scholar 

  103. • Branch-Elliman W, O’Brien W, Gupta K, et al. Association of duration and type of surgical prophylaxis with antimicrobial-associated adverse events. JAMA Surg. 2019;154:590–8. https://doi.org/10.1001/jamasurg.2019.0569 Although investigating peri-operative antibiotic prophylaxis, this paper finds that even one extra dose of antimicrobials can be detrimental to patients. It can be a valuable tool to encourage de-escalation and discontinuation beyond surgical prophylaxis.

  104. •• Dyer AP, Dodds-Ashley E, Anderson DJ, et al. Total duration of antimicrobial therapy resulting from inpatient hospitalization. Infect Control Hosp Epidemiol 2019;1–8. https://doi.org/10.1017/ice.2019.118. This is one of the first reports to look at discharge prescriptions and how they add to total durations of therapy, on top of inpatient doses. This highlights the need for transition of care stewardship.

  105. Britt RS, LaSalvia MT, Padival S, et al. Evaluation of inpatient antimicrobial regimens for readmitted outpatient parenteral antimicrobial therapy patients receiving daptomycin or ertapenem for ease of administration. Open Forum Infect Dis. 2019;6:ofz496. https://doi.org/10.1093/ofid/ofz496.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schrank GM, Wright SB, Brank-Elliman W, LaSalvia MT. A retrospective analysis of adverse events among patients receiving daptomycin versus vancomycin during outpatient parenteral antimicrobial therapy. Infect Control Hosp Epidemiol. 2018;39:947–64. https://doi.org/10.1017/ice.2018.107.

    Article  PubMed  Google Scholar 

  107. Suzuki J, Johnson J, Montgomery M, Hayden M, Price C. Outpatient parenteral antimicrobial therapy among people who inject drugs: a review of the literature. Open Forum Infect Dis. 2018;5:ofy194. https://doi.org/10.1093/ofid/ofy194.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ho J, Archuleta S, Sulaiman Z, Fisher D. Safe and successful treatment of intravenous drug users with a peripherally inserted central catheter in an outpatient parenteral antibiotic treatment service. J Antimicrob Chemother. 2010;65:2641–4. https://doi.org/10.1093/jac/dkq355.

    Article  CAS  PubMed  Google Scholar 

  109. Rapoport AB, Fischer LS, Santibanez S, et al. Infectious diseases physicians’ perspectives regarding injection drug use and related infections, United States, 2017. Open Forum Infect Dis. 2018;5:ofy132. https://doi.org/10.1093/ofid/ofy132.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bryson-Cahn C, Beieler A, Chan J, et al. A little bit of dalba goes a long way: dalbavancin use in a vulnerable patient population. Open Forum Infect Dis. 2017;4:S336–7. https://doi.org/10.1093/ofid/ofx163.800.

    Article  PubMed Central  Google Scholar 

  111. Bork JT, Heil EL, Berry S, Lopes E, Davé R, Gilliam BL, et al. Dalbavancin use in vulnerable patients receiving outpatient parenteral antibiotic therapy for invasive gram-positive infections. Infect Dis Ther. 2019;8:171–84. https://doi.org/10.1007/s40121-019-0247-0.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Buehlre DJ, Shields RK, Shah N, et al. Risk factors associated with outpatient parenteral antibiotic therapy program failure among intravenous drug users. Open Forum Infect Dis. 2017;4:ofx102. https://doi.org/10.1093/ofid/ofx102.

    Article  Google Scholar 

  113. • Beieler A, Magaret A, Zhou Y, et al. Outpatient parenteral antimicrobial therapy in vulnerable populations – people who inject drugs and the homeless. J Hosp Med. 2019;14:105–9. https://doi.org/10.12788/jhm.3138 A paper investigating risk factors for OPAT failure, including injection drugs and homelessness. Offers some additional models for care in this patient population.

  114. Schmidt M, Hearn B, Gabriel M, Spencer MD, McCurdy L. Predictors of unplanned hospitalization in patients receiving outpatient parenteral antimicrobial therapy across a large integrated healthcare network. Open Forum Infect Dis. 2017;4(2). https://doi.org/10.1093/ofid/ofx086.

  115. Huck D, Ginsberg JP, Gordon SM, Nowacki AS, Rehm SJ, Shrestha NK. Association of laboratory test result availability and rehospitalizations in an outpatient parenteral antimicrobial therapy programme. J Antimicrob Chemother. 2014;69(1):228–33. https://doi.org/10.1093/jac/dkt303.

    Article  CAS  PubMed  Google Scholar 

  116. Hale CM, Steele JM, Seabury RW, Miller CD. Characterization of drug-related problems occurring in patients receiving outpatient antimicrobial therapy. J Pharm Pract. 2017;30(6):600–5. https://doi.org/10.1177/0897190016688771.

    Article  PubMed  Google Scholar 

  117. Keller SC, Williams D, Gavgani M, Hirsch D, Adamovich J, Hohl D, et al. Cosgrove SE Rates of and risk factors for adverse drug events in outpatient parenteral antimicrobial therapy. Clin Infect Dis. 2018;66(1):11–9. https://doi.org/10.1093/cid/cix733.

    Article  CAS  PubMed  Google Scholar 

  118. Underwood J, Marks M, Collins S, Logan S, Pollara G. Intravenous catheter-related adverse events exceed drug-related adverse events in outpatient parenteral antimicrobial therapy. J Antimicrob Chemother. 2019;74(3):787–90. https://doi.org/10.1093/jac/dky474.

    Article  CAS  PubMed  Google Scholar 

  119. Shah PJ, Bergman SJ, Graham DR, et al. Monitoring of outpatient parenteral antimicrobial therapy and implementation of clinical pharmacy services at a community hospital infusion unit. J Pharm Pract. 2015;28:462–8.

    Article  Google Scholar 

  120. Walensky RP, del Rio C, Armstrong WS. Charting the future of infectious disease: anticipating and addressing the supply and demand mismatch. Clin Infect Dis. 2017;64(10):1299–301. https://doi.org/10.1093/cid/cix173.

    Article  PubMed  Google Scholar 

  121. Ross NB. Update and overview of outpatient parenteral antimicrobial therapy regulations and reimbursement. Clin Infect Dis. 2010;51(S2):S216–9. https://doi.org/10.1086/653522.

    Article  Google Scholar 

  122. Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother. 2019;74(Supplement_1):i6–i15. https://doi.org/10.1093/jac/dky530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. de Lalla F, Privitera G, Ortisi G, Rizzardini G, Santoro D, Pagano A, et al. Scarpellini P Third generation cephalosporins as a risk factor for Clostridium difficile -associated disease: a four-year survey in a general hospital. J Antimicrob Chemother. 1989;23(4):623–31. https://doi.org/10.1093/jac/23.4.623.

    Article  PubMed  Google Scholar 

  124. Montoya A, Mody L. Common infections in nursing homes: a review of current issues and challenges. Aging Health. 2011;7(6):889–99. https://doi.org/10.2217/ahe.11.80.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Dryden M, Saeed K, Townsend R, et al. Antibiotic stewardship and early discharge from hospital: impact of a structured approach to antimicrobial management. J Antimicrob Chemother. 2012;67(9):2289–96. https://doi.org/10.1093/jac/dks193.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica V. Mahoney PharmD, BCPS AQ-ID, BCIDP.

Ethics declarations

Conflict of Interest

Dr. Mahoney reports personal fees from Cepheid, personal fees from Tetraphase, personal fees from Spero, personal fees from Qpex, grants from Merck, outside the submitted work. Dr. Ryan reports personal fees from Theravance, outside the submitted work. Dr. Alexander reports personal fees from Astellas Pharma, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antimicrobial Stewardship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahoney, M.V., Ryan, K.L. & Alexander, B.T. Evaluation of OPAT in the Age of Antimicrobial Stewardship. Curr Treat Options Infect Dis 12, 158–177 (2020). https://doi.org/10.1007/s40506-020-00217-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-020-00217-6

Keywords

Navigation