Skip to main content

Advertisement

Log in

Drought stress tolerance in rice: advances in physiology and genetics research

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Plants are subjected to various abiotic stresses, of which drought can be considered as a major one, negatively affecting the productivity of rice every year. Rice is a staple food crop and plays a pivotal role in the diet of mankind. Drought avoidance and tolerance mechanisms are adopted by plant system. Expression of drought responsive genes, consequent biosynthesis of metabolites may occur under such stress conditions and help the plant to cope with the circumstances. Though the cellular genetic and metabolic mechanism of drought tolerance in rice were studied since long time, still there are complex traits whose mechanism should be clearly unraveled. This review is an attempt to connect the dots of research advances in physiology and genetics of rice, addressing the causes of drought and its impact on plant growth, with an emphasis on biochemical mechanisms mediated by phytohormones and molecular changes, such as expression of drought responsive genes and transcription factors were discussed along with the recent advances in the genome editing technology to develop drought tolerant rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah, T., Pawar, D. D., Kale, K. D., & Dingre, S. K. (2015). Water and nutrient use efficiencies of wheat (Triticum aestivum L.) under drip fertigation. Agriculture for Sustainable Development, 3(1), 52–56.

    Google Scholar 

  • Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032.

    Google Scholar 

  • Ansari, W. A., Chandanshive, S. U., Bhatt, V., Nadaf, A. B., Vats, S., Katara, J. L., Sonah, H., & Deshmukh, R. (2020). Genome editing in Cereals: approaches, applications and challenges. International Journal of Molecular Sciences, 21, 4040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14, 4885–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam, M. M., Rashid, M. A. R., Siddiqui, M. A., Khan, M. T., Farhat, F., Yasmeen, S., & Yan, Z. (2022). Recent insights into signaling responses to cope drought stress in rice. Rice Science, 29(2), 105–117.

    Article  Google Scholar 

  • Auler, P. A., Do Amaral, M. N., Rodrigues, G. D., Benitez, L. C., da Maia, L. C., Souza, G. M., & Braga, E. J. (2017). Molecular responses to recurrent drought in two contrasting rice genotypes. Planta, 246, 899–914.

    Article  CAS  PubMed  Google Scholar 

  • Babita, M., Maheswari, M., Rao, L. M., Shanker, A. K., & Rao, D. G. (2010). Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environmental and Experimental Botany, 69, 243–249.

    Article  Google Scholar 

  • Bang, S. W., Choi, S., Jin, X., Jung, S. E., Choi, J. W., Seo, J. S., & Kim, J. K. (2022). Transcriptional activation of riceCINNAMOYL-CoAREDUCTASE 10by OsNAC5, contributes to droughttolerance by modulating lignin accumulation in roots. Plant Biotechnology Journal, 20, 736–747. https://doi.org/10.1111/pbi.13752

    Article  CAS  PubMed  Google Scholar 

  • Batlang, U., Baisakh, N., Ambavaram, M. M., & Pereira, A. (2013). Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Methods in Molecular Biology, 956, 209–225.

    Article  CAS  PubMed  Google Scholar 

  • Bouman, B. A., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87–105.

    Article  Google Scholar 

  • Caine, R. S., Yin, X. J., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., Biswal, A. K., Dionora, J., Chater, C. C., Coe, R. A., Bandyopadhyay, A., Murchie, E. H., Swarup, R., Quick, W. P., & Gray, J. E. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, M. K., Basu, D., Datta, A., Chakraborty, N., & Chakraborty, S. (2009). Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Molecular & Cellular Proteomics, 8(7), 1579–1598.

    Article  CAS  Google Scholar 

  • Dai, A. (2012). Drought under global warming: A review. Wires Climate Change, 2, 45–65.

    Article  Google Scholar 

  • Dar, M. H., Waza, S. A., Shukla, S., Zaidi, N. W., Nayak, S., Hossain, M., & Singh, U. S. (2020). Drought tolerant rice for ensuring food security in Eastern India. Sustainability, 12(6), 2214.

    Article  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.

    Article  Google Scholar 

  • de Ollas, C., & Dodd, I. C. (2016). Physiological impacts of ABA-JA interactions under waterlimitation. Plant Molecular Biology, 91, 641–646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickin, E., & Wright, D. (2008). The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). European Journal of Agronomy, 28(3), 234–244.

    Article  Google Scholar 

  • Diyang, Q., Rui, H., Ji, L., Ying, L., Jierong, D., Kuaifei, X., & Mingyong, Z. (2023). Peptide transporter OsNPF8. 1 contributes to sustainable growth under salt and drought stresses, and grain yield under nitrogen deficiency in rice. Rice Science, 30(2), 113–126.

    Article  Google Scholar 

  • Du, H., Chang, Y., Huang, F., & Xiong, L. Z. (2015). GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. Journal of Integrative Plant Biology, 57(11), 954–968.

    Article  CAS  PubMed  Google Scholar 

  • Du, H., Wu, N., Fu, J., Wang, S., Li, X., Xiao, J., & Xiong, L. (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany, 63, 6467–6480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO, 2015. Statistical Pocketbook. Food and Agriculture Organisation of the United Nations, Rome, Italy. Available from:http://faostats.fao.org/production/crops..

  • Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: An overview. Plant responses to drought stress (pp. 1–33). Springer.

    Google Scholar 

  • Farooq, M., Kobayashi, N., Wahid, A., Ito, O., & Basra, S. M. A. (2009a). Strategies for producing more rice with less water. Advances in Agronomy, 101, 351–388.

    Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. (2009b). Plant drought stress: Effects, mechanisms and management (pp. 153–188). Dordrecht: Sustainable Agriculture Springer.

    Google Scholar 

  • Frank, M., Cortleven, A., Novak, O., Schmülling, T., (2020). Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. bioRxiv 2020.03.05.978221. doi:https://doi.org/10.1101/2020.03.05.978221.

  • Gao, W., Long, L., Tian, X., Xu, F., Liu, J., Singh, P. K., Botella, J. R., & Song, C. (2017). Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in Plant Science, 8, 1364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng, Y., Deng, Z., & Sun, Y. (2016). An insight into the protospacer adjacent motif of Streptococcus pyogenes Cas9 with artificially stimulated RNA-guided-Cas9 DNA cleavage flexibility. RSC Advances, 6, 33514–33522.

    Article  CAS  Google Scholar 

  • Ghosh, A., Shah, M. N. A., Jui, Z. S., Saha, S., Fariha, K. A., & Islam, T. (2018). Evolutionary variation and expression profiling of Isopentenyl transferase gene family in Arabidopsis thaliana L. and Oryza sativa L. Plant Gene, 15, 15–27.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant PhysiolBiochem, 48(12), 909–930.

    CAS  Google Scholar 

  • Gosal, S. S., Wani, S. H., & Kang, M. S. (2009). Biotechnology and drought tolerance. Journal of Crop Improvement, 23, 19–54.

    Article  CAS  Google Scholar 

  • Gujjar, R. S., & Supaibulwatana, K. (2019). The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants, 8, 542. https://doi.org/10.3390/plants8120542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368, 266–269.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Alam, M. M., Rahman, A., Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International, 2014, 757219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11), 1456–1466.

    Article  CAS  Google Scholar 

  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Wu, Q. Y., Peng, Z., Sprague, S. A., Wang, W., Park, J., Akhunov, E., Jagadish, K. S. V., Nakata, P. A., Cheng, N. H., Hirschi, K. D., White, F. F., & Park, S. (2017). Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Science and Reports, 7(1), 15950.

    Article  Google Scholar 

  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S. N., & Wang, L. C. (2018a). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain, M., Farooq, S., Hasan, W., Ul-Allah, T. M., Farooq, M., & Nawaz, A. (2018b). Drought stress in sunfower: Physiological efects and its management through breeding and agronomic alternatives. Agricultural Water Management, 201, 152–166.

    Article  Google Scholar 

  • Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., & Cheema, M. A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science, 194(3), 193–199.

    Article  CAS  Google Scholar 

  • Kadam, N., Tamilselvan, A., Lawas, L. M. F., Quinones, C., Bahuguna, R., Thomson, M. J., et al. (2017). Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit. Plant Physiology, 174, 2302–2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano-Nakata, M., Gowda, V. R., Henry, A., Serraj, R., Inukai, Y., Fujita, D., Kobayashibe, N., Suralta, R. R., & Yamauchi, A. (2013). Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions. Field Crops Research, 144, 288–296.

    Article  Google Scholar 

  • Kemble, A. R., & Macpherson, H. T. (1954). Liberation of amino acids in perennial rye grass during wilting. The Biochemical Journal, 58(1), 46–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M. I. R., Palakolanu, S. R., Chopra, P., Rajurkar, A. B., Gupta, R., Iqbal, N., & Maheshwari, C. (2021). Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. Physiologia Plantarum, 172(2), 645–668.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root response to drought stress in rice (Oryza sativa L.). International Journal of Molecular Sciences, 21(4), 1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double stranded DNA cleavage. Nature, 533, 420–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R., & Atlin, G. N. (2008). Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought tolerant donors in upland and lowland adapted populations. Field Crops Research, 107, 221–231.

    Article  Google Scholar 

  • Kumar, A., Sandhu, N., Dixit, S., Yadav, S., Swamy, B., & Shamsudin, N. A. A. (2018). Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice, 11, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari, S., Roy, S., Singh, P., Singla-Pareek, S. L., & Pareek, A. (2013). Cyclophilins: Proteins in search of function. Plant Signaling Behavior, 8(1), e22734.

    Article  PubMed  Google Scholar 

  • Kuromori, T., Seo, M., & Shinozaki, K. (2018). ABA transport and plant water stress responses. Trends in Plant Science, 23, 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Li, Y., Yin, Z., Jiang, J., Zhang, M., Guo, X., Ye, Z., Zhao, Y., Xiong, H., Zhang, Z., Shao, Y., Jiang, C., Zhang, H., An, G., Paek, N.-C., Ali, J., & Li, Z. (2017). OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signling in rice. Plant Biotechnology Journal, 15, 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Han, S., Sun, X., Khan, N. U., Zhong, Q., Zhang, Z., & Li, J. (2023). Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. Journal of Integrative Plant Biology, 65(4), 918–933.

    Article  CAS  PubMed  Google Scholar 

  • Liao, S., Qin, X., Luo, L., Han, Y., Wang, X., Usman, B., & Li, R. (2019). CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy, 9(11), 728.

    Article  CAS  Google Scholar 

  • Lim, C., Kang, K., & Shim, Y. (2022). Soo-CheulYoo, Nam-Chon Paek, Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiology, 188(4), 1900–1916. https://doi.org/10.1093/plphys/kiab492

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., & Wang, X. (2014). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology, 84, 19–36.

    Article  CAS  PubMed  Google Scholar 

  • Lou, D., Wang, H., Liang, G., & Yu, D. (2017). OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Frontiers in Plant Science, 8, 993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, G., Wang, C., Wang, G., Mao, G., Habben, J. E., Chen, G., Liu, M., Shi, Y., Wang, W., Wang, X., Li, H., Gao, Y., Qu, P., Mo, H., Beatty, M. K., Lafitte, R., Lassner, M. W., Brogile, R. M., Liu, J., & Greene, T. W. (2020). Knockouts of drought sensitive genes improve rice grain yield under both drought and well-watered field conditions. Advances in Crop Science and Technology, 8(3), 444.

    Google Scholar 

  • Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces b: Biointerfaces, 59(2), 141–149.

    Article  CAS  PubMed  Google Scholar 

  • McCouch, S., Teytelman, L., Xu, Y., Lobos, K., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D., & Stein, L. (2003). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 9, 199–207.

    Article  Google Scholar 

  • Mehrotra, R., Bhalothia, P., Bansal, P., Basantani, M. K., Bharti, V., & Mehrotra, S. (2014). Abscisic acid and abiotic stress tolerance: Different tiers of regulation. Journal of Plant Physiology, 171(7), 486–496.

    Article  CAS  PubMed  Google Scholar 

  • Melandri, G., AbdElgawad, H., Riewe, D., Hageman, J. A., Asard, H., Beemster, G. T. S., Kadam, N., Jagadish, K., Altmann, T., RuyterSpira, C., & Bouwmeester, H. (2020). Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 71(2), 669–683.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, R., & Zhao, K. (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports, 12, 57–68.

    Article  Google Scholar 

  • Mishra, S. S., Behera, P. K., Kumar, V., Lenka, S. K., & Panda, D. (2018). Physiological characterization and allelic diversity of selected drought tolerant traditional rice (Oryza sativa L.) landraces of Koraput India. Physiology and Molecular Biology of Plants, 24(6), 1035–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, S. S., Behera, P. K., & Panda, D. (2019). Genotypic variability for drought tolerance-related morpho-physiological traits among indigenous rice landraces of Jeypore tract of Odisha, India. Journal of Crop Improvement, 33, 254–278.

    Article  CAS  Google Scholar 

  • Mishra, S. S., & Panda, D. (2017). Leaf traits and antioxidant defense for drought tolerance during early growth stage in some popular traditional rice landraces from Koraput India. Rice Sciences, 24(4), 207–217.

    Article  Google Scholar 

  • Mohammadi, P. P., Moieni, A., & Komatsu, S. (2012). Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 43, 2137–2152.

    Article  CAS  PubMed  Google Scholar 

  • Muthurajan, R., Shobbar, Z. S., Jagadish, S. V., Bruskiewich, R., Ismail, A., Leung, H., et al. (2011). Physiological and proteomic responses of rice peduncles to drought stress. Molecular Biotechnology, 48, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Ogata, T., Ishizaki, T., Fujita, M., & Fujita, Y. (2020). CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under non-stressed conditions in rice. PLoS ONE, 15(12), e0243376. https://doi.org/10.1371/journal.pone.0243376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa, D., Suzuki, Y., Yokoo, T., Katoh, E., Teruya, M., Muramatsu, M., & Habu, Y. (2021). Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports, 11(1), 1–13.

    Article  Google Scholar 

  • Panda, D., Mishra, S. S., & Behera, P. K. (2021). Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Science, 28(2), 119–132.

    Article  Google Scholar 

  • Pandey, V., & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147–161.

    Article  Google Scholar 

  • Pant, B. D., Lee, S., Lee, H.-K., Krom, N., Pant, P., Jang, Y., & Mysore, K. S. (2022). Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice. Plant Physiology, 189(2), 988–1004. https://doi.org/10.1093/plphys/kiac078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. I., Kim, J. J., Shin, S. Y., Kim, Y. S., & Yoon, H. S. (2022). ASR enhances environmental stress tolerance and improves grain yield by modulating stomatal closure in rice. Frontiers in Plant Science, 10, 1752. https://doi.org/10.3389/fpls.2019.01752

    Article  Google Scholar 

  • Pattanagul, W. (2011). Exogenous abscisic acid enhances sugar accumulation in rice. Asian Journal of Plant Sciences, 10, 212–219.

    Article  CAS  Google Scholar 

  • Qi, J., Song, C.-P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J.-K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60, 805–826. https://doi.org/10.1111/jipb.12654

    Article  CAS  PubMed  Google Scholar 

  • Qi, W., Liu, Y., ZizhaoXie, B. Y., Sun, Y., & Huang, J. (2022). OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiology. https://doi.org/10.1093/plphys/kiac146

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai, G. K., Khanday, D. M., Kumar, P., Magotra, I., Choudhary, S. M., Kosser, R., & Pandey, S. (2023). Enhancing crop resilience to drought stress through CRISPR-Cas9 genome editing. Plants, 12(12), 2306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao, D. E., & Chaitanya, K. V. (2016). Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biologia Plantarum, 60(2), 201–218.

    Article  CAS  Google Scholar 

  • Reguera, M., Peleg, Z., Abdel-Tawab, Y. M., Tumimbang, E. B., Delatorre, C. A., & Blumwald, E. (2013). Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiology, 163, 1609–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi-lisar, S.Y., Motafakkerazad, R., Hossain, M.M., Rahman, I.M.M. (2012). Water stress in plants: Causes, effects and responses, water stress. In: Ismail Md. Mofizur Rahman, editor. InTech.

  • Sánchez-Romera, B., Ruiz-Lozano, J. M., Li, G., Luu, D. T., Martínez-Ballesta, M. D. C., Carvajal, M., Zamarreño, A. M., García-Mina, J. M., Maurel, C., & Aroca, R. (2014). Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant, Cell and Environment, 37, 995–1008. https://doi.org/10.1111/pce.12214

    Article  CAS  PubMed  Google Scholar 

  • Sandhu, M., Sureshkumar, V., Prakash, C., et al. (2017). RiceMetaSys for salt and drought stress responsive genes in rice: A web interface for crop improvement. BMC Bioinformatics, 18, 432. https://doi.org/10.1186/s12859-017-1846-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankar, B., Jaleel, C. A., Manivannan, P., Kishorekumar, A., Somasundaram, R., & Panneerselvam, R. (2008). Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. Under water-limited conditions. Colloids and Surfaces b: Biointerfaces., 62(1), 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Santosh Kumar, V. V., Kumar, R., Yadav, S. K., Yadav, R., & Watts, R. (2020). Springer, CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology Molecular Biology of Plants, 26, 1099–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saud, S., Fahad, S., Chen, Y. J., Ihsan, M. Z., Hammad, H. M., Nasim, W., Arif, M., & Alharby, H. (2017). Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. Frontiers in Plant Science, 8, 983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serraj, R., & Atlin, G. (2008). Drought-resistant rice for increased rainfed production and poverty alleviation: A concept note. In R. Serraj, J. Bennett, & B. Hardy (Eds.), Drought frontiers in rice: Crop improvement for increased rainfed production (pp. 385–400). World Scientific Publishing.

    Google Scholar 

  • Shan, C., Zhou, Y., & Liu, M. (2015). Nitric oxide participates in the regulation of the ascorbateglutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma, 252, 1397–1405. https://doi.org/10.1007/s00709-015-0756-y

    Article  CAS  PubMed  Google Scholar 

  • Sharma, L., Dalal, M., Verma, R. K., Kumar, S. V. V., Yadav, S. K., Pushkar, S., Kushwaha, S. R., Bhowmik, A., & Chinnusamy, V. (2018). Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environmental and Experimental Botany, 150, 9–24.

    Article  CAS  Google Scholar 

  • Shim, J. S., Oh, N., Chung, P. J., Kim, Y. S., Choi, Y. D., & Kim, J.-K. (2018). Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in Plant Science, 9, 310. https://doi.org/10.3389/fpls.2018.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikuku, P. A., Onyango, J. C., & Netondo, G. W. (2012). Yield components and gas exchange responses of nerica rice varieties (Oryza sativa L.) to vegetative and reproduce stage water deficit. Global Journal of Science Frontier Research Agriculture & Biology, 12, 49–59.

    Google Scholar 

  • Silva, D. V., Cabral, C. M., Ferreira, E. A., de Carvalho, F. P., dos Santos, J. B., & Dombroski, J. L. D. (2018). Anatomical adaptations to different soil moisture contents in palisade grass and smooth pigweed. Revista Ceres Vicosa, 65(4), 306–313.

    Article  Google Scholar 

  • Srikanth, M., Tata, S. S., & Godi, S. (2021). Abiotic stress tolerance enhancement in rice through CRISPR/Cas9 approach. Research Journal of Agricultural Sciences, 12(5), 1543–1546. https://doi.org/10.13140/RG.2.2.21918.20805

  • Todaka, D., Zhao, Y., Yoshida, T., Kudo, M., Kidokoro, S., Mizoi, J., et al. (2017). Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. The Plant Journal, 90, 61–78.

    Article  CAS  PubMed  Google Scholar 

  • Tran, T. T., Kano-Nakata, M., Suralta, R. R., Menge, D., Mitsuya, S., Inukai, Y., & Yamauchi, A. (2015). Root plasticity and its functional roles were triggered by water deficit but not by the resulting changes in the forms of soil N in rice. Plant and Soil, 386, 65–76.

    Article  CAS  Google Scholar 

  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., & Hara, N. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45, 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: A coping strategy. Environmental Science and Pollution Research, 25, 33103–33118.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, A., Mushtaq, H., Fahad, S., Shah, A., & Chaudhary, H. J. (2017). Plant growth promoting potential of bacterial endophytes in novel association with Olea ferruginea and Withaniacoagulans. Microbiology, 86, 119–127.

    Article  CAS  Google Scholar 

  • Um, T., Choi, J., Park, T., Chung, P. J., Jung, S. E., Shim, J. S., & Kim, J. K. (2022). Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant Direct, 6(1), e374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya, H., Shome, S., Tewari, S., Bhattacharya, M.K., Panda., S.K., (2016). Zinc nanoparticles induced comparative growth responses in rice (Oryza sativa L.) cultivars. Frontiers of Research in Physical Sciences, 71–77.

  • Upadhyaya, H., Dutta, B. K., Sahoo, L., & Panda, S. K. (2012). Comparative effect of Ca, K, Mn and B on post drought stress recovery in tea [Camellia sinensis (L.) O Kuntze]. American Journal of Plant Sciences, 3, 443–460.

    Article  CAS  Google Scholar 

  • Upadhyaya, H., & Panda, S. K. (2019). Drought stress responses and its management in rice. Advances in rice research for abiotic stress tolerance (pp. 177–200). Woodhead Publishing.

    Chapter  Google Scholar 

  • Usman, B., Nawaz, G., Zhao, N., Liu, Y., & Li, R. (2020). Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three Homoeologs of Cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants, 9, 788. https://doi.org/10.3390/plants9060788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vu, T., Das, S., Hensel, G., et al. (2022). Genome editing and beyond: What does it mean for the future of plant breeding? Planta, 255, 130. https://doi.org/10.1007/s00425-022-03906-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vibhuti, Shahi C, Bargali K, Bargali S S. 2015. Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Ind J Agric Sci, 85(1): 102–108.

  • Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Frontiers in Plant Science, 8, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Chen, S., Dong, Y., Ren, R., Chen, D., & Chen, X. (2020a). Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice. New Phyto, 226, 1042–1054.

    Article  CAS  Google Scholar 

  • Wang, F. B., Wan, C. Z., Niu, H. F., Qi, M. Y., Gang, L. I., Zhang, F., & Yuan, C. Y. (2023). OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice. Journal of Integrative Agriculture, 22(2), 341–359.

    Article  CAS  Google Scholar 

  • Wang, Y., Liao, Y., Quan, C., Li, Y., Yang, S., Ma, C., & Chen, R. (2022). C2H2-type zinc finger OsZFP15 accelerates seed germination and confers salinity and drought tolerance of rice seedling through ABA catabolism. Environmental and Experimental Botany, 199, 104873.

    Article  CAS  Google Scholar 

  • Wang, Y., Lu, Y. Y., Guo, Z. Y., Ding, Y. F., & Ding, C. Q. (2020b). Rice Centroradialis 1, a TFL1-like gene, responses to drought stress and regulates rice flowering transition. Rice, 13(1), 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, H., Chen, C., Ma, X., Zhang, Y., Han, J., Mei, H., & Yu, S. (2017). Comparative analysis of expression profiles of panicle development among tolerant and sensitive rice in response to drought stress. Frontiers in Plant Science, 8, 437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant, Cell and Environment, 33, 510–525. https://doi.org/10.1111/j.1365-3040.2009.02052.x

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z. Z., Jiang, Y. L., Jia, B. R., & Zhou, G. S. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 10(2), 88–94.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Yang, D., Zhou, S., Gu, J., Wang, F., Dong, J., & Huang, R. (2017). The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 254, 401–408.

    Article  CAS  PubMed  Google Scholar 

  • Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., Jin, D., Xing, Y., & Zhang, Q. (2006). Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics, 172(2), 1213–1228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue, E., Cao, H., & Liu, B. (2020). OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants, 9(10), 1337. https://doi.org/10.3390/plants9101337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar, S. A., Zaidi, S. S. E., Gaba, Y., Singla-Pareek, S. L., Dhankher, O. P., Li, X. Y., Mansoor, S., & Pareek, A. (2020). Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. Journal of Experimental Botany, 71(2), 470–479.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: Progress, implications and challenges. Human Molecular Genetics, 23(R1), R40–R46. https://doi.org/10.1093/hmg/ddu125

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Li, J., Zhang, W., Yan, S., Wang, R., Zhao, J., Li, Y., Qi, Z., Sun, Z., & Zhu, Z. (2012). The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. The Plant Journal, 72, 805–816.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.-W., Li, C. H., Cao, J., Zhang, Y.-C., Zhang, S.-Q., Xia, Y.-F., Sun, D. Y., & Sun, Y. (2009). Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3. 13 activation. Plant Physiology, 151, 1889–1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Massel, K., Godwin, I. D., & Gao, C. (2018). Applications and potential of genome editing in crop improvement. Genome Biology, 19, 210. https://doi.org/10.1186/s13059-018-1586-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Wang, X., Luo, Y., Zhang, L., Yao, Y., Han, L., Chen, Z., Wang, L., & Li, Y. (2020). OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. The Crop Journal, 8, 480–491.

    Article  Google Scholar 

  • Zhang, Z., Li, F., Li, D., Zhang, H., & Huang, R. (2010). Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta, 232, 765–774.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, H., Ma, T., Wang, X., Deng, Y., Ma, H., Zhang, R., & Zhao, J. (2015). OsAUX 1 controls lateral root initiation in rice (Oryza sativa L.). Plant, Cell and Environment, 38, 2208–2222.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. J., & Luo, J. (2018). The PIN-FORMED auxin efflux carriers in plants. International Journal of Molecular Sciences, 19(9), 2759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, M., He, Y., Zhu, M., Ahmad, A., Xu, S., He, Z., & Zhang, Z. (2022). Ipa1 improves rice drought tolerance at seedling stage mainly through activating abscisic acid pathway. Plant Cell Reports, 41(1), 221–232.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We duly acknowledge Andhra University and UGC for providing the required laboratory facilities and funding.

Author information

Authors and Affiliations

Authors

Contributions

TSRSS is a major contributor in writing and polishing along with reviewing. SG reviewed overall manuscript preparation and supported the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. S. R. S. Sandeep.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep, T.S.R.S., Godi, S. Drought stress tolerance in rice: advances in physiology and genetics research. Plant Physiol. Rep. 28, 349–361 (2023). https://doi.org/10.1007/s40502-023-00743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00743-7

Keywords

Navigation