Skip to main content

Advertisement

Log in

Below-ground physiological processes enhancing phosphorus acquisition in plants

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Phosphorus (P) is an essential element for crop growth and development. In acid soils, inorganic P (Pi) is immobilised with Fe3+ and Al3+, whereas in calcareous soils, it is fixed with Ca2+. Therefore, P nutrition is not constrained by soil P content per se but by its bioavailability to plants. The large amounts of P fertiliser applied to agricultural land to increase crop P availability can cause eutrophication of non-flowing water bodies. Being a non-renewable resource, P reserves are becoming depleted. Soil P mobilisation is governed by multiple adaptations at the physiological and molecular levels. Below-ground physiological processes including favourable root architecture and morphology, and release of carboxylates, protons and root secretory phosphohydrolases result in significant modification of the rhizosphere microenvironment thereby enhancing P acquisition. Beneficial soil microorganisms work in tandem with plants to mobilise bioavailable soil P. Phosphorus acquisition through rhizosphere modifications is an exciting area of research for plant nutritionists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Vengavasi et al. (2017)

Fig. 2

Source: Pandey et al. (2015)

Similar content being viewed by others

References

  • Aski, M. S., Rai, N., Reddy, V. R. P., Gayacharan, Dikshit, H. K., Mishra, G. P., Singh, D., Kumar, A., Pandey, R., Singh, M. P., Pratap, A., Nair, R. M., & Schafleitner, R. (2021). Assessment of root phenotypes in mungbean mini-core collection (MMC) from the World Vegetable Center (AVRDC) Taiwan. PLoS ONE, 16(3), e0247810.

  • Borah, P., Das, A., Milner, M. J., Ali, A., Bentley, A. R., & Pandey, R. (2018). Long non-coding RNAs as endogenous target mimics and exploration of their role in low nutrient stress tolerance in plants. Genes, 9, 459.

    Article  PubMed Central  Google Scholar 

  • Campos, P., Borie, F., Cornejo, P., Lopez-Raez, J. A., Lopez-Garcia, A., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos, P. M. S., Cornejo, P., Rial, C., Borie, F., Varela, R. M., Seguel, A., & Lopez-Raez, J. A. (2019). Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation. Journal of Experimental Botany, 70(20), 5631–5642.

    Article  Google Scholar 

  • Carvalhais, L. C., Dennis, P. G., Fedoseyenko, D., Hajirezaei, M.-R., Borriss, R., & von Wiren, N. (2011). Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science, 174, 3–11.

    Article  CAS  Google Scholar 

  • Chen, Y. L., Dunbabin, V. M., Diggle, A. J., Siddique, K. H. M., & Rengel, Z. (2013). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop and Pasture Science, 64, 588–599.

    Article  CAS  Google Scholar 

  • Ciereszko, I., Zebrowska, E., & Ruminowicz, M. (2011). Acid phosphatases and growth of barley (Hordeum vulgare L.) cultivars under diverse phosphorus nutrition. Acta Physiologia Plantarum, 33, 2355–2368.

    Article  CAS  Google Scholar 

  • Cordell, D., & White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus scarcity. Sustainability, 3, 2027–2049.

    Article  Google Scholar 

  • Dai, X. Y., Wang, Y. Y., Yang, A., & Zhang, W. H. (2012). OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology, 159, 169–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechassa, N., & Schenk, M. K. (2004). Exudation of organic anions by roots of cabbage, carrot, and potato as influenced by environmental factors and plant age. Journal of Plant Nutrition and Soil Science, 167, 623–629.

    Article  Google Scholar 

  • Delhaize, E., Taylor, P., Hocking, P. J., Simpson, R. J., Ryan, P. R., & Richardson, A. E. (2009). Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnology Journal, 7, 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Deng, S., Lu, L., Li, J., Du, Z., Liu, T., Li, W., Xu, F., Shi, L., Shou, H., & Wang, C. (2020). Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice. Journal of Experimental Botany, 71(14), 4321–4332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah, B. N., Karthikeyan, A. S., & Raghothama, K. G. (2007a). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143, 1789–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah, B. N., Nagaranjan, V. K., & Raghothama, K. G. (2007b). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology, 145, 147–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, D., Peng, X., & Yan, X. (2004). Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiologia Plantarum, 122, 190–199.

    Article  CAS  Google Scholar 

  • Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Zadeh, B. M., & Sarmadian, F. (2018). Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition, 64(6), 719–727.

    Article  CAS  Google Scholar 

  • FAO. (2017). http://faostat3.fao.org/browse/Q/QC/E.

  • Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop breeding for low input agriculture: A sustainable response to feed a growing world population. Sustainability, 3, 1742–1772.

    Article  Google Scholar 

  • Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J. A., & Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39, 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K., & Ma, J. F. (2007). An aluminum-activated citrate transporter in barley. Plant Cell Physiology, 48(8), 1081–1091.

    Article  CAS  PubMed  Google Scholar 

  • Gahoonia, T. S., Ali, R., Malhotra, R. S., Jahoor, A., & Rahman, M. M. (2007). Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. Journal of Plant Nutrition, 30, 829–841.

    Article  CAS  Google Scholar 

  • Gahoonia, T. S., & Nielsen, N. E. (2003). Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low and high P soils. Plant, Cell and Environment, 26, 1759–1766.

    Article  CAS  Google Scholar 

  • Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson-Mendoza, E. M., Wissuwa, M., & Heuer, S. (2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Gaume, A., Machler, F., Leon, D., Narro, L., & Frossard, E. (2001). Low-P tolerance by maize (Zea mays) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil, 228, 253–264.

    Article  CAS  Google Scholar 

  • Gonzalez-Munoz, E., Avendano-Vazquez, A.-O., Montes, R. A. C., de Folter, S., Andres-Hernandez, L., Abreu-Goodger, C., & Sawers, R. J. H. (2015). The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Frontiers in Plant Science, 6, 341.

  • Gregory, A. L., Hurley, B. A., Tran, H. T., Valentine, A. J., She, Y., Knowles, V. L., & Plaxton, W. C. (2009). In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochemical Journal, 420, 57–65.

    Article  CAS  PubMed Central  Google Scholar 

  • Grun, A., Buchner, P., Broadley, M. R., & Hawkesford, M. J. (2018). Identification and expression profiling of Pht1 phosphate transporters in wheat in controlled environments and in the field. Plant Biology, 20, 374–389.

    Article  CAS  PubMed  Google Scholar 

  • Gunes, A., & Inal, A. (2008). Phosphorus efficiency in sunflower cultivars and its relationships with phosphorus, calcium, iron, zinc and manganese nutrition. Journal of Plant Nutrition, 32(7), 1201–1218.

    Article  Google Scholar 

  • Guo, W., Zhang, L., Zhao, J., Liao, H., Zhuang, C., & Yan, X. (2008). Identification of temporally and spatially phosphate-starvation responsive genes in Glycine max. Plant Science, 175, 574–584.

    Article  CAS  Google Scholar 

  • Guo, W., Zhao, J., Li, X., Qin, L., Yan, X., & Liao, H. (2011). A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. The Plant Journal, 66, 541–552.

    Article  CAS  PubMed  Google Scholar 

  • Guppy, C. N., Menzies, N. W., Moody, P. W., & Blamey, F. P. C. (2005). Competitive sorption reactions between phosphorus and organic matter in soil: A review. Australian Journal of Soil Research, 43, 180–201.

    Google Scholar 

  • Hammond, J. P., Broadley, M. R., & White, P. J. (2004). Genetic responses to phosphorus deficiency. Annals of Botany, 94, 323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haran, S., Logendra, S., Seskar, M., Bratanova, M., & Raskin, I. (2000). Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiology, 124, 615–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, L. C., Lin, S. I., Shih, A. C., Chen, J. W., Lin, W. Y., Tseng, C. Y., Li, W. H., & Chiou, T. J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology, 151, 2120–2132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, C. Y., Shirley, N., Genc, Y., Shi, B., & Langridge, P. (2011). Phosphate utilisation efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiology, 156(3), 1217–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., Pan, L., & Chi, X. (2018). Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. 3 Biotech, 8, 461.

  • Jones, D. L., Dennis, P. G., Owen, A. G., & van Hees, P. A. W. (2003). Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil, 248, 31–41.

    Article  CAS  Google Scholar 

  • Kafle, A., Cope, K. R., Raths, R., Yakha, J. K., Subramanian, S., Bucking, H., & Garcia, K. (2019). Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy, 9, 127.

    Article  CAS  Google Scholar 

  • Kaida, R., Serada, S., Norioka, N., Norioka, S., Neumetzler, L., Pauly, M., Sampedro, J., Zarra, I., Hayashi, T., & Kaneko, T. S. (2010). Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells. Plant Physiology, 153, 603–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorassani, R., Hettwer, U., Ratzinger, A., Steingrobe, B., Karlovsky, P., & Claassen, N. (2011). Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant XI Biology, 11, 121.

    Article  CAS  Google Scholar 

  • Kochian, L. V., Hoekenga, O. A., & Pineros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorus efficiency. Annual Review of Plant Biology, 55, 459–493.

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikoff, G., Gahoonia, T., & Neilsen, N. E. (2003). Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant and Soil, 251, 83–91.

    Article  CAS  Google Scholar 

  • Lambers, H., Martinoia, E., & Renton, M. (2015). Plant adaptations to severely phosphorus-impoverished soils. Current Opinion in Plant Biology, 25, 23–31.

    Article  CAS  PubMed  Google Scholar 

  • Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., & Veneklaas, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 98, 693–713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, C., Gui, S., Yang, T., Walk, T., Wang, X., & Liao, H. (2012). Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Annals of Botany, 109, 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Xie, Y., Dai, A., Liu, L., & Li, Z. (2009). Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. Journal of Genetics and Genomics, 36, 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Li, S. M., Li, L., Zhang, F. S., & Tang, C. (2004). Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 94, 297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, C. Y., Chen, Z. J., Yao, Z. F., Tian, J., & Liao, H. (2012). Characterization of two putative protein phosphatase genes and their involvement in phosphorus efficiency in Phaseolus vulgaris. Journal of Integrative Plant Biology, 54(6), 400–411.

    Article  CAS  PubMed  Google Scholar 

  • Liang, C., Pineros, M. A., Tian, J., Yao, Z., Sun, L., Liu, J., Shaff, J., Coluccio, A., Kochian, L. V., & Liao, H. (2013). Low pH, aluminium, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 161, 1347–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Q., Cheng, X., Mei, M., Yan, X., & Liao, H. (2010). QTL analysis of root traits as related to phosphorus deficiency in soybean. Annals of Botany, 106, 223–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, H., Rubio, G., Yan, X., Cao, A., Brown, K. M., & Lynch, J. P. (2001). Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil, 232, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Magalhaes, J. V., Shaff, J., & Kochian, L. V. (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal, 57, 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Zhao, X., Zhang, L., Lu, W., Li, X., & Xiao, K. (2013). TaPht1;4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Functional Plant Biology, 40(4), 329–341.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio, J., Cruz-Ramirez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., Qiu, W., Gao, W., Tyerman, S. D., Shou, H., & Wang, C. (2016). OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant, Cell and Environment, 39(10), 2247–2259.

    Article  CAS  PubMed  Google Scholar 

  • Lung, S., & Lim, B. L. (2006). Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant and Soil, 279, 187–199.

    Article  CAS  Google Scholar 

  • Lynch, J. P., & Ho, M. D. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269, 45–56.

    Article  CAS  Google Scholar 

  • Lyu, Y., Tang, H. L., Li, H. G., Zhang, F. S., Rengel, Z., Whalley, W. R., et al. (2016). Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science, 7, 1939.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magalhaes, J. V., Liu, J., Guimaraes, C. T., Ubiraci, G. P. L., Alves, V. M. C., Wang, T. H., Schaffert, R. E., Hoekenga, O. A., Pineros, M. A., Shaff, J. E., Klein, P. E., Carneiro, N. P., Coelho, C. M., Trick, H. N., & Kochian, L. V. (2007). A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39, 1156–1161.

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes, P. C., de Souza, T. C., & Cantao, F. R. O. (2011). Early evaluation of root morphology of maize genotypes under phosphorus deficiency. Plant, Soil and Environment, 57, 135–138.

    Article  Google Scholar 

  • Maron, L. G., Pineros, M. A., Guimaraes, C. T., Magalhaes, J. V., Pleiman, J. K., Mao, C., Shaff, J., Belicuas, S. N. J., & Kochian, L. V. (2010). Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminium tolerance QTLs in maize. The Plant Journal, 61(5), 728–740.

    Article  CAS  PubMed  Google Scholar 

  • Meena, S. K., Pandey, R., Sharma, S., Gayacharan, K. T., Singh, M. P., & Dikshit, H. K. (2021). Physiological basis of combined stress tolerance to low phosphorus and drought in a diverse set of mungbean germplasm. Agronomy—Basel, 11, 99.

    Article  CAS  Google Scholar 

  • Mehra, P., Pandey, B. K., & Giri, J. (2017). Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnology Journal, 15, 1054–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, J., Sun, J., Liu, D., Li, B., Zhang, A., Li, Z., & Tong, Y. (2009). Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. Journal of Genetics and Genomics, 36(8), 455–466.

  • Miura, K., Lee, J., Gong, Q., Ma, S., Jin, J. B., Yoo, C. Y., Miura, T., Sato, A., Bohnert, H. J., & Hasegawa, P. M. (2011). SIZ1 regulation of phosphate starvation-induced root architecture remodelling involves the control of auxin accumulation. Plant Physiology, 155, 1000–1012.

    Article  CAS  PubMed  Google Scholar 

  • Muller, J., Godde, V., Niehaus, K., & Zorb, C. (2015). Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science, 6, 1014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann, G., & Romheld, V. (2012). Rhizosphere chemistry in relation to plant nutrition. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (pp. 347–368). Academic Press.

    Chapter  Google Scholar 

  • Nguyen, V. L., Palmer, L., Roessner, U., & Stangoulis, J. (2019). Genotypic variation in the root and shoot metabolite profiles of wheat (Triticum aestivum L.) indicate sustained, preferential carbon allocation as a potential mechanism in phosphorus efficiency. Frontiers in Plant Science, 10, 995.

  • Niu, T. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: A review. Annals of Botany, 112(2), 391–408.

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke, J. A., Yang, S. S., Miller, S. S., Bucciarelli, B., Liu, J., Rydeen, A., Bozsoki, Z., Udhe-Stone, C., Tu, Z. J., Allan, D., Gronwald, J. W., & Vance, C. P. (2013). An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiology, 161, 705–724.

    Article  PubMed  Google Scholar 

  • Olczak, M., Morawiecka, B., & Wątorek, W. (2003). Plant purple acid phosphatases: Genes, structures and biological function. Acta Biochimica Polonica, 50, 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, B. K., Mehra, P., Verma, L., Bhadouria, J., & Giri, J. (2017). OsHAD1, a haloacid dehalogenase-like APase, enhances phosphate accumulation. Plant Physiology, 174, 2316–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, R. (2006). Root-exuded acid phosphatase and 32Pi-uptake kinetics of wheat, rye and triticale under phosphorus starvation. Journal of Nuclear and Agricultural Biology, 35(3 & 4), 168–179.

    CAS  Google Scholar 

  • Pandey, R., Lal, M. K., & Vengavasi, K. (2018). Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Reports, 37, 1231–1244.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, R., Meena, S. K., Krishnapriya, V., Ahmad, A., & Kishora, N. (2014). Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram. Plant Cell Reports, 33, 919–928.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, R., Singh, B., & Nair, T. V. R. (2005). Impact of arbuscular-mycorrhizal fungi on phosphorus use efficiency on wheat, rye and triticale. Journal of Plant Nutrition, 28, 1867–1876.

    Article  CAS  Google Scholar 

  • Pandey, R., Singh, B., & Nair, T. V. R. (2006). Effect of arbuscular-mycorrhizal inoculation in low phosphorus soil in relation to P utilization efficiency of wheat genotypes. The Indian Journal of Agricultural Sciences, 76(6), 349–353.

    Google Scholar 

  • Pandey, R., Zinta, G., AbdElgawad, H., Ahmad, A., Jain, V., & Janssens, I. A. (2015). Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnology Advances, 33, 303–316.

    Article  CAS  PubMed  Google Scholar 

  • Pant, B. D., Buhtz, A., Kehr, J., & Scheible, W. R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal, 53, 731–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, K. H., Lee, C. Y., & Son, H. J. (2009). Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Letters in Applied Microbiology, 49, 222–228.

    Article  PubMed  Google Scholar 

  • Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews in Microbiology, 6, 763–775.

    Article  CAS  PubMed  Google Scholar 

  • Pearse, S. J., Veneklaas, E. J., Cawthray, G., Bolland, M. D., & Lambers, H. (2007). Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytologist, 173, 181–190.

    Article  CAS  Google Scholar 

  • Peret, B., Clement, M., Nussaume, L., & Desnos, T. (2011). Root development adaptation to phosphate starvation: Better safe than sorry. Trends in Plant Science, 16, 442–450.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Torres, C. A., Lopez-Bucio, J., Cruz-Ramirez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., & Herrera-Estrella, L. (2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. The Plant Cell, 20, 3258–3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403–415.

    Article  CAS  Google Scholar 

  • Plaxton, W. C., & Tran, H. T. (2011). Metabolic adaptations of phosphate-starved plants. Plant Physiology, 156, 1006–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, L., Guo, Y., Chen, L., Liang, R., Gu, M., Xu, G., Zhao, J., Walk, T., & Liao, H. (2012). Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS ONE, 7, e47726.

  • Raghothama, K. G. (1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 665–693.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, V. R, P., Aski, M. S., Mishra, G. P., Dikshit, H. K., Singh, A., Pandey, R, Singh, M. P., Gayacharan, Ramtekey, V., Priti, Rai, N., & Nair R. M. (2020). Genetic variation for root architectural traits in response to phosphorus deficiency in mungbean at the seedling stage. PLoS ONE, 15(6), e0221008.

  • Ribot, C., Wang, Y., & Poirier, Y. (2008). Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta, 227(5), 1025–1036.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A. E., Barea, J., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305–339.

    Article  CAS  Google Scholar 

  • Rodriguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287, 15–21.

    Article  CAS  Google Scholar 

  • Rose, T. J., Hardiputra, B., & Rengel, Z. (2010). Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant and Soil, 326, 159–170.

    Article  CAS  Google Scholar 

  • Rose, T. J., Impa, S. M., Rose, M. T., Pariasca, T. J., Mori, A., Heuer, S., Johnson-Beebout, S. E., & Wissuwa, M. (2012). Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Annals of Botany, 112(2), 331–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan, P. R., James, R. A., Weligama, C., Delhaize, E., Rattey, A., Lewis, D. C., Bovill, W. D., McDonald, G., Rathjen, T. M., Wang, E., Fettell, N. A., & Richardson, A. E. (2014). Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiologia Plantarum, 151(3), 230–242.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P. R., Tyerman, S. D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W. H., & Delhaize, E. (2011). The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. Journal of Experimental Botany, 62, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S. J., Ryan, P. R., Delhaize, E., & Matsumoto, H. (2004). A wheat gene encoding an aluminium-activated malate transporter. The Plant Journal, 37, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Shane, M. W., Cramer, M. D., Funayama-Noguchi, S., Cawthray, G. R., Millar, A. H., Day, D. A., & Lambers, H. (2004). Developmental physiology of cluster-root carboxylate synthesis and exudation in Harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiology, 135, 549–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, M., Pang, J., Wen, Z., Borda, A. D., Kim, H. S., Liu, Y., Lambers, H., Ryan, M. H., & Siddique, K. H. M. (2021). A significant increase in rhizosheath carboxylates and greater specific root length in response to terminal drought is associated with greater relative phosphorus acquisition in chickpea. Plant and Soil, 460, 51–68.

    Article  CAS  Google Scholar 

  • Shen, H., Chen, J., Wang, Z., Yang, C., Sasaki, T., Yamamoto, Y., Matsumoto, H., & Yan, X. (2007). Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. Journal of Experimental Botany, 57, 1353–1362.

    Article  Google Scholar 

  • Sidhu, S. K., Kaur, K., & Grewal, S. K. (2017). Genotypic variation for phosphorus efficiency of pigeonpea genotypes under varied phosphorus levels. International Journal of Current Microbiology and Applied Sciences, 6(11), 3633–3647.

    Article  Google Scholar 

  • Singh, B., & Pandey, R. (2003). Differences in root exudation among phosphorus-starved genotypes of maize and green gram and its relationship with phosphorus uptake. Journal of Plant Nutrition, 26, 2391–2401.

    Article  CAS  Google Scholar 

  • Soumya, P. R. (2020). Study of association between candidate genes and traits governing phosphorus use efficiency in wheat. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.

  • Soumya, P. R., Sharma, S., Meena, M. K., & Pandey, R. (2021). Response of diverse bread wheat genotypes in terms of root architectural traits at seedling stage in response to low phosphorus stress. Plant Physiology Reports, 26(1), 152–161.

    Article  CAS  Google Scholar 

  • Tawayara, K., Horie, R., Shinano, T., Wagatsuma, T., Saito, K., & Oikawa, A. (2014). Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Science and Plant Nutrition, 60(5), 679–694.

    Article  Google Scholar 

  • Teng, W., Deng, Y., Chen, X. P., Xu, X. F., Chen, R. Y., Lv, Y., Zhao, Y. Y., Zhao, X. Q., He, X., Li, B., Tong, Y. P., Zhang, F. S., & Li, Z. S. (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 64(5), 1403–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, W., Zhao, Y. Y., Zhao, X. Q., He, X., Ma, W. Y., Deng, Y., Chen, X. P., & Tong, Y. P. (2017). Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Frontiers in Plant Science, 8, 543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesfaye, M., Temple, S. J., Allan, D. L., Vance, C. P., & Samac, D. A. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiology, 127, 1836–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thudi, M., Chen, Y., Pang, J., Kalavikatte, D., Bajaj, P., Roorkiwal, M., Chitikineni, A., Ryan, M. H., Lambers, H., Siddique, K. H. M., & Varshney, R. K. (2021). Novel genes and genetic loci associated with root morphological traits, phosphorus-acquisition efficiency and phosphorus-use efficiency in chickpea. Frontiers in Plant Science, 12, 636973.

  • Tian, J., & Liao, H. (2015). The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling. Annual Plant Reviews: Phosphorus Metabolism in Plants, 48, 265–288.

    CAS  Google Scholar 

  • Tiessen, H. (2008). Phosphorus in the global environment. In P. J. White & J. P. Hammond (Eds.), Ecophysiology of plant-phosphorus interactions (pp. 1–8). Springer.

    Google Scholar 

  • Tovkach, A., Ryan, P. R., Richardson, A. E., Lewis, D. C., Rathjen, T. M., Ramesh, S., Tyerman, S. D., & Delhaize, E. (2013). Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiology, 161(2), 880–892.

    Article  CAS  PubMed  Google Scholar 

  • Uhde-Stone, C., Gilbert, G., Jonhson, J. M. F., Litjens, R., Zinn, K. E., Temple, S. J., Vance, C. P., & Allan, D. L. (2003). Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant and Soil, 248, 99–116.

    Article  CAS  Google Scholar 

  • Veljanovski, V., Vanderbeld, B., Knowles, V. L., Snedden, W. A., & Plaxton, W. C. (2006). Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiology, 142(3), 1282–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veneklaas, E. J., Stevens, J., Cawthray, G. R., Turner, S., Grigg, A. M., & Lambers, H. (2003). Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant and Soil, 248, 187–197.

    Article  CAS  Google Scholar 

  • Vengavasi, K., & Pandey, R. (2016). Root exudation index as a physiological marker for efficient phosphorus acquisition in soybean: An effective tool for plant breeding. Crop and Pasture Science, 67, 1096–1109.

    Article  Google Scholar 

  • Vengavasi, K., Pandey, R., Abraham, G., & Yadav, R. K. (2017). Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress. Genes, 8, 341.

    Article  PubMed Central  Google Scholar 

  • Wan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., Wang, Y., & He, D. (2020). Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. Frontiers in Microbiology, 11, 752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L., & Shen, J. (2019). Root/Rhizosphere management for improving phosphorus use efficiency and crop productivity. Better Crops, 103(1), 36–39.

    Article  Google Scholar 

  • Wang, X., Tang, C., Guppy, C. N., & Sale, P. W. G. (2008). Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant and Soil, 312, 117–128.

    Article  CAS  Google Scholar 

  • Wang, Y., Krogstad, T., Clarke, N., Ogaard, A. F., & Clarke, J. L. (2017). Impact of phosphorus on rhizosphere organic anions of wheat at different growth stages under field conditions. AoB PLANTS, 9, plx008. https://doi.org/10.1093/aobpla/plx008.

  • Wang, Y., & Lambers, H. (2020). Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives. Plant and Soil, 447, 135–156.

    Article  CAS  Google Scholar 

  • Wang, Y., Xu, H., Kou, J., Shi, L., Zhang, C., & Xu, F. (2013). Dual effects of transgenic Brassica napus overexpressing CS gene on tolerances to aluminium toxicity and phosphorus deficiency. Plant and Soil, 362, 231–246.

    Article  CAS  Google Scholar 

  • Wang, Z., Li, Q., Ge, X., Yang, C. L., Luo, X. L., Zhang, A. H., Xiao, J. L., Tian, Y. C., Xia, G. X., Chen, X. Y., Li, F. G., & Wu, J. H. (2015). The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton. Scientific Reports, 5, 10343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasaki, J., Yamamura, T., Shinano, T., & Osaki, M. (2003). Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil, 248, 129–136.

    Article  CAS  Google Scholar 

  • White, P. J. (2012). Ion uptake mechanisms of individual cells and roots: Short-distance transport. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (pp. 7–47). Academic Press.

    Chapter  Google Scholar 

  • Wongkaew, A., Srinives, P., & Nakasathien, S. (2013). Isolation and characterization of purple acid phosphatase gene during seedling development in mungbean. Biologia Plantarum, 57(2), 267–273.

    Article  CAS  Google Scholar 

  • Wu, A., Fang, Y., Liu, S., Wang, H., Xu, B., Zhang, S., Deng, X., Palta, J. A., Siddique, K. H. M., & Chen, Y. (2021). Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere, 19, 100391.

  • Yan, X., Liao, H., Beebe, S. E., Blair, M. W., & Lynch, J. P. (2004). QTL mapping for root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and Soil, 265, 17–29.

    Article  CAS  Google Scholar 

  • Ye, D., Zhang, X., Li, T., Xu, J., & Chen, G. (2017). Phosphorus-acquisition characteristics and rhizosphere properties of wild barley in relation to genotypic differences as dependent on soil phosphorus availability. Plant and Soil, 423, 503–516.

    Article  Google Scholar 

  • Yokosho, K., Yamaji, N., Ueno, D., Mitani, N., & Ma, J. F. (2009). OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiology, 149, 297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun, S. J., & Kaeppler, S. M. (2001). Induction of maize acid phosphatase activities under phosphorus starvation. Plant and Soil, 237, 109–115.

    Article  CAS  Google Scholar 

  • Zebrowska, E., Milewska, M., & Ciereszko, I. (2017). Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency. Peer Journal, 5, e3989.

  • Zeng, H., Wang, G., Hu, X., Wang, H., Du, L., & Zhu, Y. (2014). Role of microRNAs in plant responses to nutrient stress. Plant and Soil, 374, 1005–1021.

    Article  CAS  Google Scholar 

  • Zhang, D., Cheng, H., Geng, L., Kan, G., Cui, S., Meng, Q., Gai, J., & Yu, D. (2009). Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica, 167, 313–322.

    Article  CAS  Google Scholar 

  • Zhao, J., Fu, J., Liao, H., He, Y., Nian, H., Hu, Y., Qiu, L., Dong, Y., & Yan, X. (2004). Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chinese Science Bulletin, 49, 1611–1620.

    Article  CAS  Google Scholar 

  • Ziegler, J., Schmidt, S., Chutia, R., Muller, J., Bottcher, C., Strehmel, N., et al. (2016). Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate starvation. Journal of Experimental Botany, 67, 1421–1432.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Extra Mural Research Division [Grant Number 38(1354)/13/EMR-II] of Council of Scientific and Industrial Research, New Delhi, India, to RP. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) through the Designing Future Wheat programme [BB/P016855/1] to MJH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vengavasi, K., Pandey, R., Soumya, P.R. et al. Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiol. Rep. 26, 600–613 (2021). https://doi.org/10.1007/s40502-021-00627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00627-8

Keywords

Navigation