Skip to main content

Advertisement

Log in

Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO2] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP).

Abstract

Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO2] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO2]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO2] with low P. Interaction of low P and [CO2] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low Km) in response to elevated [CO2] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO2] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO2] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142:135–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida JPF, Lüscher A, Frehner M, Oberson A, Nösberger J (1999) Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilisation. Plant Soil 210:159–166

    Article  CAS  Google Scholar 

  • Ascencio J (1994) Acid phosphatase as a diagnostic tool. Commun Soil Sci Plan 25:1553–1564

    Article  CAS  Google Scholar 

  • Baldwin JC, Karthikeyan AS, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125:728–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bamakhramah HS, Halloran GM, Wilson JH (1984) Components of yield in diploid, tetraploid and hexaploid wheats (Triticum spp.). Ann Bot-London 54:51–60. https://doi.org/10.1093/oxfordjournals.aob.a086773

    Article  Google Scholar 

  • Barrett DJ, Richardson AE, Gifford RM (1998) Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus. Aust J Plant Physiol 25:87–93

    Article  CAS  Google Scholar 

  • Bassirirad H, Thomas RB, Reynolds JF, Strain BR (1996a) Differential responses of root uptake kinetics of NH4 + and NO3 to enriched atmospheric CO2 concentration in field-grown loblolly pine. Plant Cell Environ 19:367–371

    Article  CAS  Google Scholar 

  • BassiriRad H, Tissue DT, Reynolds JF, Chapin FS (1996b) Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects of growth, root respiration and PO4 3– uptake kinetics. New Phytol 133:423–430

    Article  CAS  Google Scholar 

  • BassiriRad H, Reynolds JF, Virginia RA, Brunelle MH (1997) Growth and root NO3 and PO4 3– uptake capacity of three desert species in response to atmospheric CO2 enrichment. Aust J Plant Physiol 24:353–358

    Article  Google Scholar 

  • BassiriRad H, Gutschick VP, Lussenhop J (2001) Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia 126:305–320

    Article  PubMed  Google Scholar 

  • Batten GD (1986) The uptake and utilization of phosphorus and nitrogen by diploid, tetraploid and hexaploid wheats (Triticum spp.). Ann Bot-London 58:49–59

    Article  Google Scholar 

  • Besford RT (1980) Quantitative aspects of leaf acid phosphatase activity and the phosphorus status of tomato plants. Ann Bot 44:153–161

    Article  Google Scholar 

  • Brix H, Lorenzen B, Mendelssohn IA, McKee KL, Miao SL (2010) Can differences in phosphorus uptake kinetics explain the distribution of cattail and saw grass in the Florida Everglades? BMC Plant Biol 10:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell CD, Sage RF (2002) Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.). Plant Cell Environ 25:1051–1059

    Article  Google Scholar 

  • Cordell D, Neset TSS (2014) Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Global Environ Change 24:108–122

    Article  Google Scholar 

  • de Mendiburu F (2015) Agricolae: statistical procedures for agricultural research. R package version 1.2-3. http://CRAN.R-project.org/package=agricolae

  • DeLucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot 79:111–120

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR, Barber SA, Jenkins W (1984) Changes in the kinetics of phosphate and potassium absorption in nutrient deficient barley roots measured by a solution-depletion technique. Planta 160:490–499

    Article  PubMed  CAS  Google Scholar 

  • Edwards DG (1970) Phosphate absorption and long-distance transport in wheat seedlings. Aust J Biol Sci 23:255–264

    Article  CAS  Google Scholar 

  • Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    Article  CAS  Google Scholar 

  • Gorny AG, Garczynski S (2008) Nitrogen and phosphorus efficiency in wild and cultivated species of wheat. J Plant Nutr 31:263–279

    Article  CAS  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She Y, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang ML, Deng XP, Zhao YZ, Zhou SL, Inanaga S, Yamada S, Tanaka K (2007) Water and nutrient use efficiency in diploid, tetraploid and hexaploid wheats. J Integr Plant Biol 49(5):706–715

    Article  Google Scholar 

  • Imai K, Adachi N (1996) Effects of atmospheric partial pressure of CO2 and phosphorus nutrition on growth of young rice plants. Environ Contr Biol 34:5966

    Google Scholar 

  • Israel DW, Rufty TW, Cure JD (1990) Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment. J Plant Nutr 13:1419–1433

    Article  CAS  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA, Watts-Williams SJ, Clausen SS, Grønlund M (2016) Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. J Exp Bot 67(21):6173–6186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin J, Tang C, Armstrong R, Sale P (2012) Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol. Plant Soil 358:91–104

    Article  CAS  Google Scholar 

  • Jin J, Tang C, Sale P (2015) The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Bot 116:987–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2009) Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biol Biochem 41:1111–1116

    Article  CAS  Google Scholar 

  • Kogawara S, Norisada M, Tange T, Yagi H, Kojima K (2006) Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Tree Physiol 26:25–33

    Article  PubMed  CAS  Google Scholar 

  • Leakey AD, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009) Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Nat Acad Sci USA 106:3597–3602

    Article  PubMed  Google Scholar 

  • Lefebvre DD, Duff SM, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Response to phosphate deprivation in Brassica nigra suspension cells: enhancement of intracellular, cell surface, and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiol 93:504–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YY, Zhang SQ, Shao MA (2003) Interrelationship between water use efficiency and nitrogen use efficiency of different wheat evolution materials. Chin J Appl Ecol14:1478–1480

    Google Scholar 

  • Liang C, Piñeros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu MJ, Li YY, Zhan SQ (2002) Relationship between N and P use efficiency across different wheat evolution materials. J Triticeae Crops 22:34–37

    CAS  Google Scholar 

  • Mehra P, Pandey BK, Giri J (2017) Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotech J 15:1054–1067

    Article  CAS  Google Scholar 

  • Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497:13–14

    Article  PubMed  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Newbery RM, Wolfenden J, Mansfield TA, Harrison AF (1995) Nitrogen, phosphorus and potassium uptake and demand in Agrostis capillaris: the influence of elevated CO2 and nutrient supply. New Phytol 130:565–574

    Article  Google Scholar 

  • Niu Y, Chai R, Dong H, Wang H, Tang C, Zhang Y (2013) Effect of elevated CO2 on phosphorus nutrition of phosphate deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. J Exp Bot 64:355–367

    Article  PubMed  CAS  Google Scholar 

  • Niu Y, Ahammed GJ, Tang C, Guo L, Yu J. (2016) Physiological and transcriptome responses to combinations of elevated CO2 and magnesium in Arabidopsis thaliana. PLoS One 11(2), e0149301

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, Mc Murtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Nat Acad Sci USA 107:19368–19373

    Article  PubMed  Google Scholar 

  • Norisada M, Motoshige T, Kojima K, Tange T (2006) Effects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlings. J Plant Nutr Soil Sci 169:274–279

    Article  CAS  Google Scholar 

  • O’Rourke JA, Yang SS, Miller SS, Buciarelli B, Liu J, Rydeen A, Bozsoki Z, Udhe-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, Singh B, Nair TVR (2007) Variability in kinetics of phosphorus uptake in wheat under P-starvation. J Nucl Agric Biol 36:1–15

    CAS  Google Scholar 

  • Pandey R, Meena SK, Krishnapriya V, Ahmad A, Kishora N (2014) Root carboxylate exudation capacity under phosphorus-stress does not improve grain yield in greengram. Plant Cell Rep 33:919–928

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, Zinta G, AbdElgawad H, Ahmad A, Jain V, Janssens IA (2015) Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotech Adv 33:303–316

    Article  CAS  Google Scholar 

  • Pandey R, Meena SK, Vengavasi K, Khetarpal S, Singh MP (2016) Phosphorus nutrition improves growth, nitrogen fixation and yield in greengram in response to high atmospheric [CO2]. Indian J Fert 12:56–64

    Google Scholar 

  • Pandey BK, Mehra P, Verma L, Bhadouria J, Giri J (2017) OsHAD1, a Haloacid Dehalogenase-Like APase, enhances phosphate accumulation. Plant Physiol 174:2316–2332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñaloza E, Munoz G, Salvo-Garrido H, Silva H, Corcuera LJ (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56:145–153

    PubMed  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99:46–57

    CAS  Google Scholar 

  • Sailo N, Verma R, Pandey R, Jain V (2013) Effect of elevated carbon dioxide on nitrogen assimilation and mobilization in wheat and rye genotypes of different ploidy levels. Indian J Plant Physiol 18:333–338

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schulze J, Tesfaye M, Litjens RHMG., Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance CP (2002) Malate plays a central role in plant nutrition. Plant Soil 247:133–139

    Article  CAS  Google Scholar 

  • Seneweera S (2011) Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. J Plant Interact 6:35–42

    Article  CAS  Google Scholar 

  • Sicher RC (2005) Interactive effects of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate partitioning in barley roots. Physiol Plant 123:219–226

    Article  CAS  Google Scholar 

  • Takatani N, Ito T, Kiba T, Mori M, Miyamoto T, Maeda S, Omata T (2014) Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant Cell Physiol 55:281–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taub DR, Wang XZ (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5:99–114

    Article  PubMed  CAS  Google Scholar 

  • Udhe-Stone C, Gilbert G, Jonhson JMF, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116

    Article  Google Scholar 

  • Uprety DC, Dwivedi N, Raj A, Jaiswal S, Paswan G, Jain V, Maini HK (2009) Study on the response of diploid, tetraploid and hexaploid species of wheat to the elevated CO2. Physiol Mol Biol Plants 15:161–168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vengavasi K, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67:1096–1109

    Google Scholar 

  • Vengavasi K, Kumar A, Pandey R (2016) Transcript abundance, enzyme activity and metabolite concentration regulates differential carboxylate efflux in soybean under low phosphorus stress. Indian J Plant Physiol 21:179–188

    Article  CAS  Google Scholar 

  • Vengavasi K, Pandey R, Abraham G, Yadav RK (2017) Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress. Genes 8:341

    Article  PubMed Central  CAS  Google Scholar 

  • Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watt M, Evans JR. (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120, 705–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zerihun A, BassiriRad H (2001) Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: potential causes and consequences. Global Change Biol 7:211–222

    Article  Google Scholar 

  • Zhang ZB, Shan L (1997) Comparison study on water use efficiency of wheat flag leaf. Chin Sci Bull 42:1876–1881 (in Chinese).

    Google Scholar 

  • Zhou G, Pereira JF, Delhaize E, Zhou M, Magalhaes JV, Ryan PR (2014) Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.. J Exp Bot 65:2381–2390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the ICAR-Indian Agricultural Research Institute [IARI:PPH:09:01(2)], New Delhi, India. Junior Research Fellowship provided by Indian Council of Agricultural Research, New Delhi to MKL is duly acknowledged. The authors also acknowledge the critical comments by three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Pandey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Manoj Prasad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R., Lal, M.K. & Vengavasi, K. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Rep 37, 1231–1244 (2018). https://doi.org/10.1007/s00299-018-2307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2307-4

Keywords

Navigation