Skip to main content

Advertisement

Log in

Alarming influence of climate change and compromising quality of medicinal plants

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Climate change has been considered among the greatest challenge to living organisms. Medicinal and aromatic plants are no exception to it. The practice of use of therapeutic plant has proved to be particularly important in the health system all over the world. WHO predicted that 60% of the earth population and 80% of the population of 3rd world countries bank on herbal medicine, for their wellbeing requirements. Environmental conditions under the influence of climate change is dreadful not only for declining the quality of planting material but also severely retards public health. Our main idea is to focus on cultivation of local valued plants, training for farmers, preservation of traditional knowledge, developing awareness among people regarding alarming influence of climate change on medicinal plants. Anthropogenic activity-mediated climate change has devastating impacts on species varieties, on the earth. The augmented releases of greenhouse gases in the air; mainly of CO2 is the main reason for climatic changes. Study reveals the true understanding of effect of changing climate scenario on Medicinal plants. Differential patterns of climate change cause abiotic stress and can change the growth physiology, growth pattern, declines in biomass production, changes in phytochemical active constituents and overall changes the quality and safety of medicinal plants.After studying enormous review papers, detailed information regarding repercussions of climate change on therapeutic plants is found to be so negligible as compared to other trade crops, therefore we have tried to highlight the discipline in a comprehensive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IPCC:

Intergovernmental Panel on Climate Change

CO2:

Carbon di oxide

Ppm:

Parts per million

μmol·mol−1 :

Micro mole/mole

PAL:

Phenylalanine ammonia lyase

M:

Meter

IHR:

Indian Himalaya Region

°C:

Degree Centrigrade

MAPs:

Medicinal and aromatic plants

%:

Percent

Μl:

Micro litre

e [CO2]:

Elevated CO2

Rubisco:

Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase

O2 :

Oxygen

FACE:

(Free-air CO2 enrichment)

CA:

Carbonic Anhydrase

N-based:

Nitrogen – based

ADS:

Amorpha-4,11-Diene Synthase

CYP71AV1:

Cytochrome P450 monooxygenase

FATI:

Free Air Temperature Increase

References

  • Agrawal, M., & Deepak, S. S. (2003). Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in combination. Environmental Pollution, 121(2), 189–197. https://doi.org/10.1016/S0269-7491(02)00222-1.

    Article  CAS  PubMed  Google Scholar 

  • Alhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A., & Elkelish, A. (2019). Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules, 10, 43.

    Article  Google Scholar 

  • Anynomous. (2010). District Gazetteer of Chakwal Divisional Forest Office.

  • Arcus, V. L., Prentice, E. J., Hobbs, J. K., Mulholland, A. J., Van der Kamp, M. W., Pudney, C. R., Parker, E. J., & Schipper, L. A. (2016). On the temperature dependence of enzyme catalyzed rates. Biochemistry, 55, 1681–1688.

    Article  CAS  Google Scholar 

  • Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x.

    Article  Google Scholar 

  • Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y., & Funada, R. (2013). Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiologia Plantarum, 147(1), 46–54. https://doi.org/10.1111/j.1399-3054.2012.01663.x

    Article  CAS  PubMed  Google Scholar 

  • Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., et al. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228.

    Article  Google Scholar 

  • Biel, C., Save, R., Cristobal, R., & Cases, M. A. (2005). Effects of atmospheric carbon dioxide concentrations on Thymus vulgaris. Thymus zygisand Thymus hyemalis. Acta Horticulturae., 676, 61–65.

    Article  CAS  Google Scholar 

  • Chandra, S., Chandola, V., Nautiyal, M., & Purohit, V. (2020). Elevated CO2 causes earlier flowering in an alpine medicinal herb Aconitum heterophyllum Wall. Current Science, 118, 1650–1651.

    Google Scholar 

  • Chaturvedi, A. K., Vashistha, R. K., Rawat, N., Prasad, P., & Nautiyal, M. (2009). Effect of CO2 enrichment on photosynthetic behavior of podophyllum hexandrum, an endangered medicinal herb. Journal of American Science, 5(5), 113–118.

    Google Scholar 

  • Clark, R., & Menary, R. (1980). Environmental effects on peppermint (Mentha piperita L.). II. Effects of temperature on photosynthesis, photorespiration and dark respiration in peppermint with reference to oil composition. Australian Journal of Plant Physiology, 7(6), 693–697.

    CAS  Google Scholar 

  • Crafts-Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiology, 129(4), 1773–1780. https://doi.org/10.1104/pp.002170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar, U., Rawal, R., Airi, S., Bhatt, I., & Samant, S. (2002). Promoting outreach through conservation education programmes- Case study from Indian Himalayan Region. Current Science, 82, 808–815.

    Google Scholar 

  • Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. (1997). More efficient plants: A Consequence of Rising Atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 609–639. https://doi.org/10.1146/annurev.arplant.48.1.609.

    Article  CAS  PubMed  Google Scholar 

  • Eamus, D., & Jarvis, P. G. (1989). The Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests. In M. Begon, A. H. Fitter, E. D. Ford, & A. MacFadyen (Eds.), Advances in Ecological Research (Vol. 19, pp. 1–55). Academic Press. https://doi.org/10.1016/S0065-2504(08)60156-7

  • Falcone, D. L., Ogas, J. P., & Somerville, C. R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biology, 4(1), 17. https://doi.org/10.1186/1471-2229-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller, I., Lovelock, C., Berger, U., McKee, K., Joye, S., & Ball, M. (2010). Biocomplexity in Mangrove Ecosystems. Annual Review of Marine Science, 2, 395–417. https://doi.org/10.1146/annurev.marine.010908.163809

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 Enrichment on Synthesis of Some Primary and Secondary Metabolites in Ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences. https://doi.org/10.3390/ijms12021101

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimmer, C., Bachfischer, T., & Komor, E. (1999). Carbohydrate partitioning into starch in leaves of Ricinus communis L. grown under elevated CO2 is controlled by sucrose. Plant, Cell and Environment, 22(10), 1275–1280. https://doi.org/10.1046/j.1365-3040.1999.00481.x

    Article  CAS  Google Scholar 

  • Gunderson, C. A., & Wullschleger, S. D. (1994). Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynthesis Research, 39(3), 369–388. https://doi.org/10.1007/BF00014592.

    Article  CAS  PubMed  Google Scholar 

  • Handa, I. T., Körner, C., & Hättenschwiler, S. (2005). A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology, 86(5), 1288–1300. https://doi.org/10.1890/04-0711.

    Article  Google Scholar 

  • Heskel, M., O’Sullivan, O., Reich, P., Tjoelker, M., Weerasinghe, L. K., Penillard, A., Egerton, A., Creek, D., Bloomfield, K., & Xiang, J. (2016). Convergence in the temperature response of leaf respiration across biomes and plant functional types. (Vol. 113). Proceedings of the National Academy of Sciences.

  • Hofstra, G., & Hesketh, J. D. (1969). Effects of temperature on the gas exchange of leaves in the light and dark. Planta, 85(3), 228–237. https://doi.org/10.1007/BF00389400

    Article  CAS  PubMed  Google Scholar 

  • Hovenden, M. J., & Williams, A. L. (2010). The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems. Austral Ecology, 35(6), 665–684. https://doi.org/10.1111/j.1442-9993.2009.02074.x

    Article  Google Scholar 

  • https://www.ipcc.ch/2019/

  • Ibrahim, M. H., & Jaafar, H. Z. E. (2012). Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil Palm) Seedlings. Molecules. https://doi.org/10.3390/molecules17055195

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis.

  • Jochum, G. M., Mudge, K. W., & Thomas, R. B. (2007). Elevated temperatures increase leaf senescence and root secondary metabolite concentration in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany., 94, 819–26. https://doi.org/10.3732/ajb.94.5.819.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M., Phillips, D., Tingey, D., & Storm, M. (2000). Effects of elevated CO2, N-fertilization, and season on survival of ponderosa pine fine roots. Canadian Journal of Forest Research, 30, 220–228.

    Article  Google Scholar 

  • Kaundal, M., Bhatt, V., & Kumar, R. (2018). Elevated CO2 and temperature effect on essential oil content and composition of valeriana jatamansi jones with organic manure application in a Western Himalayan region. Journal of Essential Oil Bearing Plants, 21(4), 1041–1050. https://doi.org/10.1080/0972060X.2018.1497547.

    Article  CAS  Google Scholar 

  • Kosobryukhov, A. A. (2009). Activity of the photosynthetic apparatus at periodic elevation of CO2 concentration. Russian Journal of Plant Physiology, 56(1), 6–13. https://doi.org/10.1134/S1021443709010026

    Article  CAS  Google Scholar 

  • Kull, O., Tulva, I., & Vapaavuori, E. (2003). Influence of elevated CO2 and O3 on Betula pendula Roth crown structure. Annals of Botany, 91(5), 559–569. https://doi.org/10.1093/aob/mcg052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law, R. D., & Crafts-Brandner, S. J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiology, 120(1), 173–182. https://doi.org/10.1104/pp.120.1.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey, R. (2020). Climate Change: Atmospheric Carbon Dioxide. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

  • Litvak, M. E., Constable, J. V. H., & Monson, R. K. (2002). Supply and demand processes as controls over needle monoterpene synthesis and concentration in douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Oecologia, 132(3), 382–391.

    Article  Google Scholar 

  • Makino, A., & Mae, T. (1999). Photosynthesis and plant growth at elevated levels of CO2. Plant and Cell Physiology, 40(10), 999–1006. https://doi.org/10.1093/oxfordjournals.pcp.a029493.

    Article  CAS  Google Scholar 

  • Pearcy, R. W. (1978). Effect of growth temperature on the fatty acid composition of the leaf lipids in atriplex lentiformis (Torr.) wats. Plant Physiology, 61(4), 484–486. https://doi.org/10.1104/pp.61.4.484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterhansel, C., Horst, I., Niessen, M., Blume, C., Kebeish, R., & Kürkcüoglu, S. (2010). Photorespiration. (e0130 ed., Vol. 8). Arabidopsis Book.

  • Pokhilko, A., Flis, A., Sulpice, R., Stitt, M., & Ebenhoh, O. (2014). Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: A computational model. Molecular Biosystems, 10, 613–627.

    Article  CAS  Google Scholar 

  • Prior, L. D., Eamus, D., & Bowman, D. M. J. (2003). Leaf attributes in the seasonally dry tropics a comparison of four habitats in northern Australia. Functional Ecology, 17(4), 504–515.

    Article  Google Scholar 

  • Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J., & van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2(1), 15190. https://doi.org/10.1038/nplants.2015.190

    Article  CAS  PubMed  Google Scholar 

  • Reddy, A. R., Rasineni, G. K., & Raghavendra, A. S. (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99(1), 46–57.

    CAS  Google Scholar 

  • Rogers, A., Allen, D. J., Davey, P. A., Morgan, P. B., Ainsworth, E. A., Bernacchi, C. J., Cornic, G., Dermody, O., Dohleman, F. G., Heaton, E. A., Mahoney, J., Zhu, X.-G., Delucia, E. H., Ort, D. R., & Long, S. P. (2004). Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant, Cell and Environment, 27(4), 449–458. https://doi.org/10.1111/j.1365-3040.2004.01163.x

    Article  CAS  Google Scholar 

  • Romano, R. A., & Saraiva, A. M. (2006). Computers in Agriculture and Natural Resources. In 4th World Congress Conference.

  • Sharma, S., Walia, S., Rathore, S., Kumar, P., & Kumar, R. (2020). Combined effect of elevated CO2 and temperature on growth, biomass and secondary metabolite of Hypericum perforatum L. in a western Himalayan region. Journal of Applied Research on Medicinal and Aromatic Plants, 16, 100239, https://doi.org/10.1016/j.jarmap.2019.100239.

    Article  Google Scholar 

  • Tissartn, B. (2002). Influence of Ultra-High carbon dioxide levels on growth and morphogenesis of Lamiaceae species in soil. Journal of Herbs, Spices and Medicinal Plants., 9, 81–89.

    Article  Google Scholar 

  • Tjoelker, M. G., Oleksyn, J., & Reich, P. B. (2001). Modelling respiration of vegetation: Evidence for a general temperature-dependent Q10. Global Change Biology, 7(2), 223–230. https://doi.org/10.1046/j.1365-2486.2001.00397.x

    Article  Google Scholar 

  • Uprety, D. C., Dwivedi, N., Mohan, R., & Paswan, G. (2001). Effect of Elevated CO2 Concentration on Leaf Structure of Brassica Juncea under Water Stress. Biologia Plantarum, 44(1), 149–152. https://doi.org/10.1023/A:1017959429783

    Article  Google Scholar 

  • Vajana, M., Maheswari, M., Ratnakumar, P., & Ramakrishna, Y. S. (2006). Monitoring and controlling of CO2 concentration in open top chambers for better understanding of plants response to elevated CO2 levels. Indian Journal of Radio and Space Physics, 35, 193–197.

    Google Scholar 

  • Vurro, E., Bruni, R., Bianchi, A., & di Toppi, L. S. (2009). Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini- FACE system. Environmental and Experimental Botany., 65(2), 99–106.

    Article  CAS  Google Scholar 

  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry, 49, 4977–4982.

    Article  CAS  Google Scholar 

  • Wang, D., Heckathorn, S. A., Wang, X., & Philpott, S. M. (2012). A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia, 169(1), 1–13. https://doi.org/10.1007/s00442-011-2172-0.

    Article  Google Scholar 

  • Weerasinghe, L. K., Creek, D., Crous, K. Y., Xiang, S., Liddell, M. J., Turnbull, M. H., & Atkin, O. K. (2014). Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiology, 34(6), 564–584. https://doi.org/10.1093/treephys/tpu016

    Article  CAS  PubMed  Google Scholar 

  • Woodrow, I. E. (1994). Optimal acclimation of the C3 photosynthetic system under enhanced CO2. Photosynthesis Research, 39(3), 401–412. https://doi.org/10.1007/BF00014594.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H. C., Bulgakov, V. P., & Jinn, T. L. (2018). Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Frontiers in Plant Science, 9, 1612. https://doi.org/10.3389/fpls.2018.01612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zobayed, S. M. A., Afreen, F., & Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiology and Biochemistry, 43(10), 977–984. https://doi.org/10.1016/j.plaphy.2005.07.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babita Patni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patni, B., Bhattacharyya, M., kumari, A. et al. Alarming influence of climate change and compromising quality of medicinal plants. Plant Physiol. Rep. 27, 1–10 (2022). https://doi.org/10.1007/s40502-021-00616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00616-x

Keywords

Navigation