Skip to main content
Log in

Biochemical compounds and enzymatic systems related to tolerance to water deficit of maize seedlings

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

The use of vigorous seeds in drought situations, it may be a strategy to ensure tolerance to drought for better development of the seedlings. It was evaluated whether maize (Zea mays L.) plants from seeds with high vigor possess greater tolerance to water deficit than low vigor seeds and to identify which morphological parameters, biochemical compounds and enzymatic systems are more important for this tolerance. Two maize hybrids with contrasting seed vigor were used: HT1 (high vigor) and HT2 (low vigor). Two pre-established moisture treatments were used one without stress (control, 80% maximum gravimetric moisture) and the other with water restriction (50%). After 20 days, the size and volume of the roots were analyzed and the contents of total soluble proteins, proline and hydrogen peroxide and the activity of antioxidant enzymes, such as superoxide dismutase, catalase and ascorbate peroxidase, were determined for leaf tissue. The HT1 hybrid (high vigor) demonstrated a greater capacity to combat oxidative stress with the accumulation of proline and increased activity of antioxidant enzymes, which may be indicative of tolerance to water deficit. The variables that most contributed to the tolerance to water deficit in HT1 were increased activity of the enzymes catalase and ascorbate peroxidase, and a reduction in hydrogen peroxide content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in Vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  • Ali, Q., & Ashraf, M. (2011). Induction of drought tolerance in maize (Zea mays L.) due to Exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. Journal of Agronomy and Crop Science, 197, 258–271. https://doi.org/10.1111/j.1439-037x.2010.00463.x

    Article  CAS  Google Scholar 

  • Anjorin, F. B., Adejumo, S. A., Agboola, L., & Samuel, Y. D. (2016). Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetari Agronomice in Moldova, 49(3), 51–62. https://doi.org/10.1515/cerce-2016-0025

    Article  Google Scholar 

  • Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 08(69), 1–12. https://doi.org/10.3389/fpls.2017.00069

    Article  Google Scholar 

  • Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280–292. https://doi.org/10.1034/j.1399-3054.1998.1040217.x

    Article  CAS  Google Scholar 

  • Barbosa, M. R., De Silva, M. M., & A., Willadino, L., Ulisses, C. & Camara, T. R. . (2014). Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, 44(3), 453–460. https://doi.org/10.1590/S0103-84782014000300011

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Benešová, M., Holá, D., Fischer, L., Jedelský, P. L., Hnilička, F., Wilhelmová, N., Rothová, O., Kočová, M., Procházková, D., Honnerová, J., Fridrichová, L., & Hniličková, H. (2012). The physiology and proteomics of drought tolerance in Maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE, 7(6), 1–17. https://doi.org/10.1371/journal.pone.0038017

    Article  CAS  Google Scholar 

  • Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell and Environment, 40(1), 4–10. https://doi.org/10.1111/pce.12800

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brasil. (2009). Regras para análise de sementes (p. 399). Ministério da Agricultura, Pecuária e Abastecimento: Secretaria de Defesa Agropecuária. Brasília, Mapa/ACS.

    Google Scholar 

  • Da Silva, M. R., Martin, T. N., Ortiz, S., Bertoncelli, P., & Vonz, D. (2012). Desempenho agronômico de genótipos de milho sob condições de restrição hídrica. Revista De Ciências Agrárias, 35(1), 202–212.

    Google Scholar 

  • De Almeida, J. A., Bertol, I., Leite, D., Amaral, A. J., & Do & Zoldan, W. A. J. . (2005). Propriedades químicas de um cambissolo húmico sob preparo convencional e semeadura direta após seis anos de cultivo. Revista Brasileira De Ciência Do Solo, 29(3), 437–445. https://doi.org/10.1590/S0100-06832005000300014

    Article  Google Scholar 

  • de Souza, M. L. C., da Silva Alves Zappavigna Starling, C., Machuca, L.M.R, et al. (2020). Biochemical parameters and physiological changes in maize plants submitted to water deficiency. SN Applied Sciences, 2, 447. https://doi.org/10.1007/s42452-020-2246-x

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Fleta-Soriano, E., & Munné-Bosch, S. (2016). Stress memory and the inevitable effects of drought: A physiological perspective. Frontiers in Plant Science, 7(143), 1–6. https://doi.org/10.3389/fpls.2016.00143

    Article  Google Scholar 

  • Giannopolitis, C., & Ries, S. (1977). Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiology, 59(1), 309–314.

    CAS  PubMed  Google Scholar 

  • Hendges, F. B., Rambo, C. R., Alcassa, L. P., Liebl, J., Vendruscolo, E. C. G., & Costa, A. C. T. (2015). Avaliação enzimática e fisiológica de plântulas de milho submetidas à seca. Revista Brasileira De Energias Renováveis, 4(2), 52–63.

    Article  Google Scholar 

  • Iqbal, H., Yaning, C., Waqas, M., Rehman, H., Shareef, M., & Iqbal, S. (2018). Hydrogen peroxide application improves quinoa performance by affecting physiological and biochemical mechanisms under water-deficit conditions. Journal of Agronomy and Crop Science, 204(6), 541–553. https://doi.org/10.1111/jac.12284

    Article  CAS  Google Scholar 

  • Jagadish, S. V. K., Pal, M., Sukumaran, S., Parani, M., & Siddique, K. H. M. (2020). Heat stress resilient crops for future hotter environments. Plant Physiology Reports, 25(4), 529–532. https://doi.org/10.1007/s40502-020-00559-9

    Article  Google Scholar 

  • Jain, N., Singh, G. P., Yadav, R., Pandey, R., Ramya, P., Shine, M. B., Pandey, V. C., Rai, N., Jha, J., & Prabhu, K. V. (2014). Root trait characteristics and genotypic response in wheat under different water regimes. Cereal Research Communications, 42(3), 426–438. https://doi.org/10.1556/CRC.42.2014.3.6

    Article  Google Scholar 

  • Krzyzanowski, F. C., Vieira, R. D., & França-Neto, J. B. (1999). Associação Brasileira de Tecnologia de Sementes, Comitê de Vigor de Sementes (p. 218p). Londrina: ABRATES.

    Google Scholar 

  • Li, H., Li, X., Zhang, D., Liu, H. & Guan, K. (2013). Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae). Excli Journal, 4(12), 89–101.

  • Marcos-Filho, J. (2015). Fisiologia de Sementes de Plantas Cultivadas. 2. edn. Londrina/PR: ABRATES, v. 1, p. 659.

  • Mittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(01), 11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.

    Article  CAS  Google Scholar 

  • Prazeres, C. S. & Coelho, C. M. M. (2017). Hydration curve and physiological quality of maize seeds subjected to water deficit. Semina: Ciências Agrárias. 38(3), 1179–1186. https://doi.org/10.5433/1679-0359.2017v38n3p1179

  • Team, R. C. (2016). R: A language and environment for statistical computing. R Foundation f or Statistical Computing. Available in. www.R-project.org

  • Santos, O. O., Falcão, H., Antonino, A. C. D., Lima, J. R. S., Lustosa, B. M., & Santos, M. G. (2014). Desempenho eco fisiológico de milho, sorgo e braquiária sob déficit hídrico e reidratação. Bragantia, 73(2), 203–212. https://doi.org/10.1590/brag.2014.018

    Article  Google Scholar 

  • Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38(7), 995–1014. https://doi.org/10.1590/S0100-879X2005000700003

    Article  CAS  PubMed  Google Scholar 

  • Silva, R. C., de Souza Grzybowski, C. R., & Panobianco, M. (2016). Vigor de sementes de milho: Influência no desenvolvimento de plântulas em condições de estresse salino. Revista Ciência Agronômica, 47(03), 491–499.

    Article  Google Scholar 

  • Singh, I., Nepolean, T., Rajendran, R. A., & Shono, M. (2012). Maize: Physiological and Molecular Approaches for Improving Drought Tolerance. Improving Crop Resistance to Abiotic Stress, 50(7), 1260–1276. https://doi.org/10.1002/9783527632930.ch33

    Article  Google Scholar 

  • Zadebagheri, M., Azarpanah, A., & Javanmardi, S. (2013). Proline metabolite transport an efficient approach in maize yield improvement as response to drought conditions. American-Eurasian Journal of Agricultural and Environmental Sciences, 13(12), 1632–1641. https://doi.org/10.5829/idosi.aejaes.2013.13.12.12284

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Programa de Bolsas de Monitoria de Pós-Graduação (PROMOP)/ Universidade do Estado de Santa Catarina (UDESC) / Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (TR653PAP/UDESC/FAPESC) for providing financial support for developing this study. The supervisor (Coelho, C. M. M) thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for productivity scholarship. This article is part of Prazeres, C. S., Doctorate degree.

Author information

Authors and Affiliations

Authors

Contributions

Camila Segalla Prazeres and Cileide Maria Medeiros Coelho elaborated the objectives and the proposals of the research and conduction of the experiment. Camila Segalla Prazeres carried out the assembly of the vessels and data collection in the greenhouse and in the laboratory, statistical analysis and article elaboration. Clovis Arruda Souza provided research facilities and assisted in experiment set-up and article fix.

Corresponding author

Correspondence to Camila Segalla Prazeres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prazeres, C.S., Coelho, C.M.M. & Souza, C.A. Biochemical compounds and enzymatic systems related to tolerance to water deficit of maize seedlings. Plant Physiol. Rep. 26, 402–411 (2021). https://doi.org/10.1007/s40502-021-00602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00602-3

Keywords

Navigation