Skip to main content
Log in

Impact of heavy metals on physiological health of lichens growing in differently polluted areas of central Assam, North East India

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Accumulation of heavy metals on naturally grown epiphytic lichens and its impact on their physiological integrity was examined. Lichen species collected from differently polluted areas (oil refinery, roadside) were compared with the species collected from relatively lesser polluted areas. Heavy metal buildup in lichens were found to have significant damaging effect on their physiological health. Pb, Cd, Zn, Cu, Co, Ni and Cr concentrations were found to be higher in the lichen species collected from both the polluted areas. Metal accumulation in lichen thallus has positive correlation at p ≤ 0.01 (r = 0.417 to 0.772) with the recorded protein concentrations. Whereas, other studied parameters like chlorophyll and carotenoid concentrations, membrane stability and pH documented negative correlation with the accumulated heavy metals. However, abundance of species Dirinaria applanata and Dirinaria sp. at polluted areas with better protein content indicates their tolerance towards heavy metal. Chlorophyll degradation and protein contents in the lichens were found to be efficient physiological parameters to correlate with the air quality of a region. Sensitivity to heavy metals may be the cause of sparsity of species Arthonia cinnabarina, Cryptothecia subnidulans and Lecanora sp. in the polluted areas. However, lesser sensitivity to heavy metals favored the growth of species Dirinaria applanata and Dirinaria sp. even in higher polluted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Awasthi, D. D. (1991). A Key to the micro lichens of India. Nepal and Sri Lanka.

    Google Scholar 

  • Bačkor, M., Fahselt, D., Davidson, R. D., & Wu, C. T. (2003). Effects of copper on wild and tolerant strains of the lichen photobiont Trebouxia erici (Chlorophyta) and possible tolerance mechanisms. Archives of Environmental Contamination and Toxicology, 45, 159–167.

    Article  Google Scholar 

  • Bačkor, M., & Fahselt, D. (2004). Physiological attributes of the lichen Cladonia pleurota inheavy metal-rich and control sites near Sudbury (Ontario, Canada). Environmental Experimental Botany, 52, 149–159.

    Article  Google Scholar 

  • Bačkor, M., & Loppi, S. (2009). Interaction of lichens with heavy metals. Biologia Plantarum, 53, 214–222.

    Article  Google Scholar 

  • Bačkor, M., Kováčik, J., Dzubaj, A., & Bačkorová, M. (2009). Physiological comparison of Coper toxicity in the lichen Peltigera rufescens (weis) Humb and Cladonia arbuscula sub sp Mitis. Water Air and soil Pollution, 207, 253–262.

    Article  Google Scholar 

  • Bačkor, M., & Zet´ıková, J. (2003). Effects of copper, cobalt and mercury on the chlorophyll content of lichens Cetraria islandicaand Flavocetraria cucullata. The Journal of the Hattori Botanical Laboratory, 93, 175–187.

    Google Scholar 

  • Bajpai, R., Upreti, D. K., Nayaka, S., & Kumari, B. (2010). Biodiversity, Bioaccumulation and Physiological changes in lichens growing in the vicinity of coal- based thermal power plant of Raebareli district North India. Journal of Hazardous Materials, 174, 429–436.

    Article  CAS  Google Scholar 

  • Bajpai, R., Karakoti, N., & Upreti, D. K. (2013). Performance of a naturally growing Parmelioid lichen Remototrachyna awasthii against organic and inorganic pollutants. Environmental Science and Pollution Research, 20(8), 5577-5592.

  • Bajpai, R., Pandey, A. K., Deeba, F., Upreti, D. K., Nayaka, S., & Pandey, V. (2012). Physiological effects of arsenate on transplant thalli of the lichen Pyxine cocoes (Sw) Nyl. Environmental Science and Pollution Research, 19, 1494–1502.

    Article  CAS  Google Scholar 

  • Bajpai, R., Shukla, V., Singh, N., Rana, T. S., & Upeti, D. K. (2015). Physiological and genetic effects of chromium (+VI) on toxitolerant lichen species Pyxine cocoes. Environmental Science and Pollution Research, 22, 3727–3738.

    Article  CAS  Google Scholar 

  • Baranowska, I., Pienkowski, P., & Bosiacka, B. (2001). Content and localization of heavy metals in thalli of hemerophilous lichens. Polish Journal of Environmental Studies, 10(4), 213–216.

    Google Scholar 

  • Branquinho, C., Brown, D. H., & Catarino, F. (1997). The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environmental Experimental Bot, 38, 165–179.

    Article  CAS  Google Scholar 

  • Carreras, H. A., & Pignata, M. L. (2007). Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety, 67, 59–66.

    Article  CAS  Google Scholar 

  • Cecconi, E., Fortuna, L., Peplis, M., & Tretiach, M. (2020). Element accumulation performance of living and dead lichens in a large-scale transplant application. Environmental Science and Pollution Research, 1–13.

  • Conti, M. E., Finoia, M., Bocca, B., Melr, G., Alimonti, A., & Pino, A. (2011). Atmospheric background trace element deposition in Ti erradel region using transplanted Usnea barbata lichens. Environment monitoring and assessment, 184(1), 527–538.

    Article  Google Scholar 

  • Dzubaj, A., Bačkor, M., Tomko, J., Peli, E., & Tuba, Z. (2008). Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicoly and Environmental Safety, 70, 319–326.

    Article  CAS  Google Scholar 

  • Garty, J., Ronen, R., & Galun, M. (1985). Correlation between chlorophyll degradation and the amount of some elements in the lichen Ramalina duriaei (De Not.) Jatta. Environmental and Experimental Botany, 25, 67–74.

    Article  CAS  Google Scholar 

  • Guerra, M. B. B., Amarasiriwardena, D., SchaeferPereira, C. E. G. R. C. D., Spielmann, A. A., Nobrega, J. A., & Pereira-Filho, E. R. (2011). Biomonitoring of lead in Antarctic lichens using laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 26(11), 2238. https://doi.org/10.1039/c1ja10198

    Article  CAS  Google Scholar 

  • Gupta, N., Dwivedi, S. K., & Upreti, D. K. (2020). Estimation of physiological responses using two growth forms of lichens around coal-based Tanda thermal power plant, Ambedkar Nagar district of Uttar Pradesh, India. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology), 10(1), 131–141.

    Article  Google Scholar 

  • Karakoti, N., Bajpai, R., Upreti, D. K., Mishra, G. K., Srivastava, A., & Nayaka, S. (2014). Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl: A case study from Uttar Pradesh India. Environmental earth sciences, 71(5), 2177–2183.

    Article  CAS  Google Scholar 

  • Lim, H. S., Han, M. J., Seo, D. C., Kim, J. H., Lee, J., II., Park, H., & Cho, J. S. (2009). Heavy metal Concentrations in the fruticose lichen Usnea aurantiacoatra from King George Islands, West Antarctica. Journal of the Korean Society for Applied Biological Chemistry, 52(5), 503–508. https://doi.org/10.3839/jksabc.2009.086

    Article  CAS  Google Scholar 

  • Loppi, S. (2019). May the diversity of epiphytic lichens Be used in environmental forensics? Diversity, 11(3), 36. https://doi.org/10.3390/d11030036

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin Phenol reagent. Biological Chemistry, 193, 265.

    Article  CAS  Google Scholar 

  • Lucking, R., Archer, A. W., & Aptroot, A. (2009). A worldwide key to the genus (Graphis Ostropales Graphidaceae). The Lichenologist, 41(4), 363–452.

    Article  Google Scholar 

  • Mitra, B., Sharma, S., Das, A. B., Henry, S. L., Das, T. K., Ghosh, P., Ghosh, S., & Mohanty, P. (2008). A novel cadmium induced protein in wheat: characterization and localization in root tissue. Biologia Plantarum, 52, 343–346.

    Article  Google Scholar 

  • Munzi, S., Pisani, T., & Loppi, S. (2009). The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicology and Environmental Safety, 72, 2009–2012.

    Article  CAS  Google Scholar 

  • Orange, A., James, P. W., & White, F. J. (2001). Micro chemical methods for the identification of lichens. London: British Lichen Society.

    Google Scholar 

  • Paoli, L., Corsini, A., Bigagli, V., Vannini, J., Bruscoli, C., & Loppi, S. (2012). Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution, 161, 70–75.

  • Paoli, K. L., Fiorini, E., Gaggi, C., & Loppi, S. (2013). Influence of angular exposure and proximity to vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic related elements. Environmental Science and Pollution Research, 20, 250–259.

    Article  CAS  Google Scholar 

  • Pawlik, S. B., & Bačkor, M. (2011). Zn/Pb tolerant lichens with higher content of secondary metabolites produce less phytochealatin than specimens living in unpolluted habitats. Environmental and Experimental Botany, 72, 64–70.

    Article  Google Scholar 

  • Pawlik, B., Purvis, O. W., Pirszel, J., & Skowroński, T. (2006). Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. The Lichenologist, 38, 267–275.

    Article  Google Scholar 

  • Pisani, T., Munzi, S., Paoli, L., Bačkor, M., & Loppi, S. (2009). Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L) TH FR. Chemospere, 76, 921–926.

    Article  CAS  Google Scholar 

  • Rola, K., Latkowska, E., Kurdziel, B. M., & Osyczka, P. (2019). Heavy metal tolerance in pioneer lichens inhibiting heavily polluted sites. Science of total Environment, 679, 260–269.

    Article  CAS  Google Scholar 

  • Ronen, R., & Galun, M. (1984). Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany, 24, 239–245.

    Article  CAS  Google Scholar 

  • Shukla, V., & Upreti, D. K. (2008). Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environmental monitoring and assessment, 141(1), 237–243.

  • Shukla, V., & Upreti, D. K. (2009). Polycyclic Aromatic Hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula in Dehra Dun City Garhwal Himalayas. Environmental Monitoring and Assessment, 149, 1–7.

    Article  CAS  Google Scholar 

  • Shukla, V., Upreti, D. K., & Patel, D. K. (2012). Physiological attributes of lichens, Phaeophyscia hispidula in heavy metal rich sites of Dehra Dun, India. Journal of Environmental Biology, 33, 1051–1055.

    CAS  PubMed  Google Scholar 

  • Sujetovienė, G. (2015). Monitoring lichen as indicator of atmospheric quality. In D. K. Upreti, P. K. Divakar, V. Shukla, & R. Bajpai (Eds.), Recent Advances in Lichenology: Modern and Approaches in Biomonitoring and Bioprospection (pp. 87–118s). Springer.

    Google Scholar 

  • Tiwari, J. N., Chaturvedi, P., Ansari, N. G., Patel, D. K., Jain, S. K., & Murthy, R. C. (2011). Assessment of PAH and Heavy metals in the Vicinity of an Oil Refinery in India. Soil and sediment contamination, 20(3), 315–328.

    Article  CAS  Google Scholar 

  • Tripathi, N. (2009). Analysis of fertilizers for major and micronutrients. In H. L. S. Tandon (Ed.), Methods of analysis of soils, plants, water, fertilizers and organic manure (pp. 153–182). New Delhi.

    Google Scholar 

  • Tyler, G. (1989). Uptake, retention, and toxicity of heavy metals in lichens. Water Air Soil Pollution, 47, 321–333.

    Article  CAS  Google Scholar 

  • Tyagi, A., Kumar, N., & Sairam, R. M. (1999). Efficacy of RWC, membrane stability, osmotic potential, endogenous aba and root biomass as indices for selection against water stress in rice. Indian Journal Plant Physiology, 4, 302–306.

    CAS  Google Scholar 

  • Vantová, I., Bačkor, M., Klejdus, B., Bačkorová, M., & Kováčik, J. (2013). Copper uptake and Coper induced physiological changes in the epiphytic lichen Evernia prunastri. Plant Growth Regulation, 69, 1–9.

    Article  Google Scholar 

  • Walker, F. J., & James, P. W. (1980). A revised guide to the micro chemical technique for the identification of lichen products. Bulletin of British Lichen Society, 46, 13–29.

    Google Scholar 

  • Zambrano, A., & Nash, T. H. (2000). Lichen responses to short-term transportation in Desierto de los Leones, Maxico city. Environmental pollution, 107, 407–412.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmali Gogoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetia, J., Gogoi, N., Gogoi, R. et al. Impact of heavy metals on physiological health of lichens growing in differently polluted areas of central Assam, North East India. Plant Physiol. Rep. 26, 210–219 (2021). https://doi.org/10.1007/s40502-021-00575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00575-3

Keywords

Navigation