Skip to main content
Log in

Influence of angular exposure and proximity to vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements in a town of central Italy. An Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of road-lining trees and in a urban park 250 m away, and the content of selected trace elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, and Zn) was determined in samples of the lichen Punctelia borreri (Sm.) Krog growing on tree bark, both on the exposed and opposite sides. ILD increases with distance from traffic emissions. However, at the site with vehicle traffic, non-nitrophilous lichens decreased while nitrophilous ones increased. The concentration of the traffic-related elements Ba, Cr, Cu, Mn, Sb, and Zn accumulated in thalli of P. borreri was higher on roadside trees than in trees from the urban park. ILD was not affected by the angular exposure to the road and the bioaccumulation of traffic-related elements was similar in lichens from the side of the bole exposed to traffic emissions and particulate resuspension and from the opposite side. The angular exposure in respect to the traffic source does not influence trace element accumulation. These results are important when using lichens for biomonitoring purposes, both for planning future studies and for the reliability of the interpretation of past surveys that do not report information about the angular exposure of the collected lichen material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu-Allaban M, Gillies JA, Gertler AW, Clayton R, Profitt D (2003) Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos Environ 37:5283–5293

    Article  CAS  Google Scholar 

  • ARPAT (2010) Rapporto provinciale qualità dell'aria di Siena—Anno 2010, pp 47

  • Asta J, Erhardt W, Ferretti M, Fornasier F, Kirschbaum U, Nimis PL, Purvis OW, Pirintsos S, Scheidegger C, Van Haluwyn C, Wirth V (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer, Norwell, MA, pp 273–279

    Chapter  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals—a review. Biol Plantarum 53:214–222

    Article  Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin

    Google Scholar 

  • Bargagli R, Nimis PL (2002) Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer, Norwell, MA, pp 295–299

    Chapter  Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220

    Article  CAS  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Assen, Netherlands

    Google Scholar 

  • Bettinelli M, Spezia S, Bizzarri G (1996) Trace element determination in lichens by ICP–MS. Atom Spectrosc 17:133–141

    CAS  Google Scholar 

  • Cadle SH, Mulawa PA, Ball J, Donase C, Weibel A, Sagebiel JC, Knapp KT, Snow R (1997) Particulate emission rates from in-use high-emitting vehicles recruited in Orange County, California. Environ Sci Technol 31:3405–3412

    Article  CAS  Google Scholar 

  • Campo G, Orsi M, Badino G, Giacomelli R, Spezzano P (1996) Evaluation of motorway pollution in a mountain ecosystem. Pilot project: Susa Valley (Northwest Italy) years 1990–1994. Sci Total Environ 189(190):161–166

    Article  Google Scholar 

  • Cape JN, Tang YS, Van Dijk N, Love L, Sutton MA, Palmer SCF (2004) Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environ Pollut 132:469–478

    Article  CAS  Google Scholar 

  • Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464

    Article  CAS  Google Scholar 

  • Cuny D, Van Haluwyn C, Pesch R (2001) Biomonitoring of trace elements in air and soil compartments along the major motorway in France. Water Air Soil Pollut 125:273–289

    Article  CAS  Google Scholar 

  • Davies L, Bates JW, Bell JNB, James PW, Purvis OW (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environ Pollut 146:299–310

    Article  CAS  Google Scholar 

  • Del Guasta M (2000) Angular distribution of epiphytic lichens on Tilia trees as a result of car traffic. Allionia 37:233–240

    Google Scholar 

  • Dietl C, Reifenhaüser W, Peichl L (1997) Association of antimony with traffic-occurrence in airborne dust, deposition and accumulation in standardized grass cultures. Sci Total Environ 205:235–244

    Article  CAS  Google Scholar 

  • Ferry BW, Baddeley MS, Hawksworth DL (1973) Air pollution and lichens. Althone Press, London

    Google Scholar 

  • Frati L, Caprasecca E, Santoni S, Gaggi C, Guttová A, Gaudino S, Pati A, Rosamilia S, Pirintsos SA, Loppi S (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environ Pollut 142:58–64

    Article  CAS  Google Scholar 

  • Fujiwara F, Rebagliati RJ, Marrero J, Gómez D, Smichowski P (2011) Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchem J 97:62–67

    Article  CAS  Google Scholar 

  • Garty J (1993) Lichens as biomonitors for heavy metal pollution. In: Markert B (ed) Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 193–263

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371

    Article  CAS  Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2004) Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Sci Total Environ 324:183–199

    Article  CAS  Google Scholar 

  • Helmers E (1996) Elements accompanying platinum emitted from automobile catalysts. Chemosphere 33:405–419

    Article  CAS  Google Scholar 

  • Helmers E (2000) PGE emissions of automobile catalysts-identifying their track in the environment. A challenge to analytical strategy and assessment. In: Zereini F, Alt F (eds) Anthropogenic platinum group element emissions. Their impact on man and environment. Springer, Berlin, pp 133–144

    Chapter  Google Scholar 

  • Hopke PK, Lamb RE, Natusch DFS (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14:164–172

    Article  CAS  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Llop E, Pinho P, Matos P, Pereira MJ, Branquinho C (2012) The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecol Indic 13:215–221

    Article  CAS  Google Scholar 

  • Loppi S (1996) Effects of road dust contamination on epiphytic lichen communities (central Italy). Micologia e Vegetazione Mediterranea 11:155–160

    Google Scholar 

  • Loppi S, De Dominicis V (1996) Effects of agriculture on epiphytic lichen vegetation in central Italy. Israel J Plant Sci 44:297–307

    Google Scholar 

  • Loppi S, Frati L (2004) Influence of tree substrate on the diversity of the epiphytic lichens: comparison between Tilia platyphyllos and Quercus ilex (Central Italy). Bryologist 107:340–344

    Article  Google Scholar 

  • Loppi S, Nascimbene J (2010) Monitoring H2S air pollution caused by the industrial exploitation of gethoermal energy: the pitfall of using lichens as bioindicators. Environ Pollut 158:2635–2639

    Article  CAS  Google Scholar 

  • Loppi S, Pirintsos SA (2000) Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece). Israel J Plant Sci 48:91–95

    Article  Google Scholar 

  • Loppi S, Chiti F, Corsini A, Bernaldi L (1994) Lichen biomonitoring of trace metals in the Pistoia area (central-northern Italy). Environ Monit Assess 24:17–27

    Article  Google Scholar 

  • Loppi S, Corsini A, Bruscoli C, Rossetti C (1995) Lichen biomonitoring of heavy metals in Montecatini Terme (central-northern Italy). Micologia e Vegetazione Mediterranea 10:122–128

    Google Scholar 

  • Loppi S, Ivanov D, Boccardi R (2002) Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environ Pollut 116:123–128

    Article  CAS  Google Scholar 

  • Loppi S, Frati L, Paoli L, Bigagli V, Rossetti C, Bruscoli C, Corsini A (2004) Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Sci Total Environ 326:113–122

    Article  CAS  Google Scholar 

  • Lough GC, Schauer JJ, Park S-J, Shafer MM, DeMinter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    Article  CAS  Google Scholar 

  • Lowenthal DH, Zielinska B, Chow JC, Watson JG, Gautam M, Ferguson DH, Neuroth GR, Stevens KD (1994) Characterisation of heavy-duty diesel vehicle emissions. Atmos Environ 28:731–743

    Article  CAS  Google Scholar 

  • Monaci F, Bargagli R, Gasparo D (1997) Air pollution monitoring by lichens in a small medieval town of central Italy. Acta Bot Neerl 46:403–412

    CAS  Google Scholar 

  • Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R (2000) Biomonitoring of aiborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environ Pollut 107:321–327

    Article  CAS  Google Scholar 

  • Morcelli CPR, Figueiredo AMG, Sarkis JES, Enzweiler J, Kakazu M, Sigolo JB (2005) PGEs and other traffic-related elements in roadside soils from São Paulo, Brazil. Sci Total Environ 345:81–91

    Article  CAS  Google Scholar 

  • Nimis PL, Martellos S (2008) ITALIC—The information system on Italian Lichens. Version 4.0. University of Trieste, Dept. of Biology, IN4.0/1 (http://dbiodbs.univ.trieste.it/)

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens. NATO Science Series. Kluwer, Norwel, MA, p 408

    Book  Google Scholar 

  • Oliveira C, Pio C, Caseiro A, Santos P, Nunes T, Mao H, Luahana L, Sokhi R (2010) Road traffic impact on urban atmospheric aerosol loading at Oporto, Portugal. Atmos Environ 44:3147–3158

    Article  CAS  Google Scholar 

  • Paoli L, Loppi S (2008) A biological method to monitor early effect of the air pollution caused by the industrial exploitation of geothermal energy. Environ Pollut 155:383–388

    Article  CAS  Google Scholar 

  • Paoli L, Guttová A, Loppi S (2006) Assessment of environmental quality by the diversity of epiphytic lichens in a semi-arid mediterranean area (Val Basento, South Italy). Biologia 61:353–359

    Article  Google Scholar 

  • Patra A, Colvile R, Arnold S, Bowen E, Shallcross D, Martin D, Price C, Tate J, ApSimon H, Robins A (2008) On street observations of particulate matter movement and dispersion due to traffic on an urban road. Atmos Environ 42:3911–3926

    Article  CAS  Google Scholar 

  • Que Hee SS (1994) Availability of elements in leaded/unleaded automobile exhaust, a leaded paint, a soil and some mixtures. Arch Environ Con Tox 27:145–153

    Article  Google Scholar 

  • Seaward MRD (1993) Lichens and sulphur dioxide air pollution: field studies. Environ Rev 1:73–91

    Article  CAS  Google Scholar 

  • Seaward MRD, Coppins BJ (2004) Lichens and hypertrophication. Bibl Lichenol 88:561–572

    Google Scholar 

  • Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20

    Article  CAS  Google Scholar 

  • Sternbeck J, Sjödin A, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36:4735–4744

    Article  CAS  Google Scholar 

  • Sutton MA, Dragosits U, Tang YS, Fowler D (2000) Ammonia emissions from non-agricultural sources in the UK. Atmos Environ 34:855–869

    Article  CAS  Google Scholar 

  • Van Herk CM (2002) Epiphytes on wayside trees as an indicator of eutrophication. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer, Norwel, MA, pp 285–289

    Chapter  Google Scholar 

  • Van Herk CM, Aptroot A (2000) The sorediate Punctelia species with lecanoric acid in Europe. Lichenologist 32:233–246

    Article  Google Scholar 

  • Von Uexküll O, Skerfving S, Doyle R, Braungart M (2005) Antimony in brake pads—a carcinogenic component? J Clean Prod 13:19–31

    Article  Google Scholar 

  • Wolseley PA, James PW, Purvis OW, Leith ID, Sutton MA (2004) Bioindicator methods for nitrogen based on community species composition: lichens. In: Sutton MA, Pitcairn CER, Whitfield CP (eds) Bioindicator and biomonitoring methods for assessing the effects of atmospheric nitrogen on statutory nature conservation sites. JNCC Report No. 356 pp 75–86

  • Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2005) Estimation of element deposition derived from road traffic sources by using mosses. Environ Pollut 138:238–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of the late Prof. Carlo Gaggi (1955–2011), our colleague and friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Loppi.

Additional information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paoli, L., Munzi, S., Fiorini, E. et al. Influence of angular exposure and proximity to vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements. Environ Sci Pollut Res 20, 250–259 (2013). https://doi.org/10.1007/s11356-012-0893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0893-1

Keywords

Navigation