Skip to main content
Log in

Symptomless phytoplasmosis of black alder (Alnus glutinosa): a model for host tolerance

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Phytoplasmas are associated with hundreds of plant diseases worldwide including many economically important crops. These bacteria are limited in their plant hosts to the phloem sieve tubes and are transmitted by phloem sap-sucking insect vectors. Research on these pathogens is hampered by the unavailability of axenic cultures and established cultivation methods despite their importance. Alder yellows (AldY) phytoplasma frequently infects Alnus spp. (black alder), and is closely related to the economically important phytoplasma causing Flavescence dorée (FD) in grapevines, a quarantine pathogen. AldY strains had been transmitted to grapevines through an occasional grapevine-feeding vector from alders; consequently, AldY share a common European origin with FD. In contrast to FD, no phytoplasma typical infection-associated symptoms such as yellowing and decline can be observed for AldY. Here, we summarize the current state of the art of phytoplasmosis of black alder (Alnus glutinosa). The symptomless phytoplasmosis might be an interesting model for investigating host tolerance strategies in phytoplasma/host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbà, S., Galetto, L., Carle, P., Carrere, S., Delledonne, M., Foissac, X., et al. (2014). RNA-Seq profile of flavescence dorée phytoplasma in grapevine. BMC Genomics,15, 1088.

    Article  Google Scholar 

  • Armanhi, J. S., de Souza, R. S., de Araujo, L. M., Okura, V. K., Mieczkowski, P., Imperial, J., et al. (2016). Multiplex amplicon sequencing for microbe identification in community-based culture collections. Scientific Reports,6, 29543.

    Article  CAS  Google Scholar 

  • Arnaud, G., Malembic-Maher, S., Salar, P., Bonnet, P., Maixner, M., Marcone, C., et al. (2007). Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence doree phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environment Microbiology,73, 4001–4010.

    Article  CAS  Google Scholar 

  • Benson, D. R., & Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiological Reviews,57, 293–319.

    Article  CAS  Google Scholar 

  • Chuche, J., & Thiéry, D. (2014). Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review. Agronomy for Sustainable Development,34, 381–403.

    Article  Google Scholar 

  • Chung, W. C., Chen, L. L., Lo, W. S., Lin, C. P., & Kuo, C. H. (2013). Comparative analysis of the peanut witches’-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS ONE,8, e62770.

    Article  CAS  Google Scholar 

  • Davis, R. E., & Dally, E. L. (2001). Revised subgroup classification of group 16SrV phytoplasmas and placement of Flavescence Dorée-associated phytoplasmas in two distinct subgroups. Plant Disease,85, 790–797.

    Article  CAS  Google Scholar 

  • Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma‐ or PLT group‐like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Annals of the Phytopathological Society of Japan,33, 259–266.

    Article  Google Scholar 

  • Duduk, B., & Bertaccini, A. (2011). Phytoplasma classification: Taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes,1, 3–13.

    Article  Google Scholar 

  • Firrao, G., The IRPCM phytoplasma/spiroplasma working team—Phytoplasma taxonomy group, et al. (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology,54, 1243–1255.

    Article  CAS  Google Scholar 

  • Frazier, M., Helmkampf, M., Bellinger, M. R., Geib, S. M., & Takabayashi, M. (2017). De novo metatranscriptome assembly and coral gene expression profile of Montipora capitata with growth anomaly. BMC Genomics,18, 710.

    Article  Google Scholar 

  • Griesmann, M., Chang, Y., Liu, X., Song, Y., Haberer, G., Crook, M. B., et al. (2018). Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science,361, pii: eaat1743.

    Article  Google Scholar 

  • Hijaz, F., & Killiny, N. (2014). Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange). PLoS ONE,9, e101830.

    Article  Google Scholar 

  • Holz, S., Duduk, B., Büttner, C., & Kube, M. (2016). Genetic variability of Alder yellows phytoplasma in Alnus glutinosa in its natural Spreewald habitat. Forest Pathology,46(1), 11–21.

    Article  Google Scholar 

  • Jomantiene, R., Zhao, Y., & Davis, R. E. (2007). Sequence-variable mosaics: Composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA and Cell Biology,26, 557–564.

    Article  CAS  Google Scholar 

  • Kube, M., Mitrovic, J., Duduk, B., Rabus, R., & Seemüller, E. (2012). Current view of phytoplasma genomes and encoded metabolism. Scientific World Journal. https://doi.org/10.1100/2012/185942.

    Article  PubMed  Google Scholar 

  • Lederer, W., & Seemüller, E. (1991). Occurrence of mycoplasma-like organisms in diseased and non-symptomatic Alder Trees (Alnus spp.). European Journal of Forest Pathology,21, 90–96.

    Article  Google Scholar 

  • Maixner, M., & Reinert, W. (1999). Oncopsis alni (Schrank) (Auchenorrhyncha : Cicadellidae) as a vector of the alder yellows phytoplasma of Alnus glutinosa (L.) Gaertn. European Journal of Plant Pathology,105, 87–94.

    Article  Google Scholar 

  • Malembic-Maher, S., Salar, P., Filippin, L., Carle, P., Angelini, E., & Foissac, X. (2010). Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijs.0.025411-0.

    Article  PubMed  Google Scholar 

  • McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T.-A., Chiykowski, L. N., Cousin, M. T., et al. (1989). Plant diseases associated with mycoplasma-like organisms. In R. F. Whitcomb & J. G. Tully (Eds.), The mycoplasmas. New York: Academic Press.

    Google Scholar 

  • Meier, D. V., Pjevac, P., Bach, W., Hourdez, S., Girguis, P. R., Vidoudez, C., et al. (2017). Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME Journal,11, 1545–1558.

    Article  CAS  Google Scholar 

  • Schumacher, J., Leonhard, S., Grundmann, B. M., & Roloff, A. (2006). New alder disease in Spreewald biosphere reserve—causes and incidental factors of an epidemic. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes,58, 141–147.

    Google Scholar 

  • Seemüller, E., & Lederer, W. (1988). MLO-associated decline of Alnus glutinosa, Populus tremula and Crataegus monogyna. Journal of Phytopathology-Phytopathologische Zeitschrift,121, 33–39.

    Article  Google Scholar 

  • Seemüller, E., Garnier, M., & Schneider, B. (2002). Mycoplasmas of plants and insects. In S. Razin & R. Herrmann (Eds.), Molecular biology and pathology of mycoplasmas (pp. 91–116). London: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Seemüller, E., Sule, S., Kube, M., Jelkmann, W., & Schneider, B. (2013). The AAA + ATPases and HflB/FtsH proteases of ‘Candidatus Phytoplasma mali’: Phylogenetic diversity, membrane topology, and relationship to strain virulence. Molecular Plant-Microbe Interactions,26(3), 367–376.

    Article  Google Scholar 

  • Siewert, C., Luge, T., Duduk, B., Seemüller, E., Büttner, C., Sauer, S., et al. (2014). Analysis of expressed genes of the bacterium ‘Candidatus Phytoplasma Mali’ highlights key features of virulence and metabolism. PLoS ONE,9(4), e94391.

    Article  Google Scholar 

  • Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., & Hogenhout, S. A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America,108, E1254–E1263.

    Article  CAS  Google Scholar 

  • Wang, J., Song, L., Jiao, Q., Yang, S., Gao, R., Lu, X., et al. (2018). Comparative genome analysis of jujube witches’-broom Phytoplasma, an obligate pathogen that causes jujube witches’-broom disease. BMC Genomics,19, 689.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kube.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kube, M., Furch, A.C.U. Symptomless phytoplasmosis of black alder (Alnus glutinosa): a model for host tolerance. Plant Physiol. Rep. 24, 550–554 (2019). https://doi.org/10.1007/s40502-019-00489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00489-1

Keywords

Navigation