Skip to main content

Advertisement

Log in

Engineering Dental Implants

  • Dental Restorative Materials (M Özcan, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Implant dentistry is traditionally viewed as a clinical subject. However, the integration of a foreign metallic structure into a living bone involves several engineering considerations. This paper aims at reviewing and discussing recent basic issues and developments pertaining to the engineering aspects of dental implant development.

Recent Findings

We consider the three components of the system, namely the implant itself, the bone, and their interaction. We start with the implant material and its geometrical and surface condition parameters. Next, we discuss the long-term mechanical survivability of the implant, namely its resistance to fatigue cracking, outlining the uncertainty on the applied loads, and surrounding atmosphere. Following a summary of the jawbone from a mechanical standpoint, we discuss the dental implant-bone interaction, as modeled analytically or numerically, with emphasis on the bone damage and evolution. The contribution of high resolution observations to enriched numerical simulations is discussed.

Summary

Progress in both experimental characterization techniques and numerical simulation methods brings engineering and dentistry closer, allowing for more focused clinical work that will ultimately lead to personalized implant dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chrcanovic BR, Albrektsson T, Wennerberg A. Reasons for failures of oral implants. J Oral Rehabil. 2014:443–76.

  2. Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials (Basel). 2012;5:1528–45.

    Article  PubMed Central  Google Scholar 

  3. Antunes RA, De Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation. Acta Biomater. Acta Materialia Inc. 2012;8:937–62.

    Article  CAS  PubMed  Google Scholar 

  4. Papakyriacou M, Mayer H, Pypen C, Plenk H, Stanzl-Tschegg S. Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue. 2000;22:873–86.

    Article  CAS  Google Scholar 

  5. Oliveira NTC, Aleixo G, Caram R, Guastaldi AC. Development of Ti-Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater Sci Eng A. 2007;452–453:727–31.

    Article  Google Scholar 

  6. Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis–a case-control study. J Periodontol. 2016:1–12.

  7. •• Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles–a systematic analytical review. Acta Biomater. 2014:2379–403. An up to date review.

  8. Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantol. 2011;37:367–76.

    Article  PubMed  Google Scholar 

  9. Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res. 2012;14:538–45.

    Article  PubMed  Google Scholar 

  10. •• Osman R, Swain M. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015;8:932–58. A comparison of metallic and ceramic implants.

    Article  PubMed Central  Google Scholar 

  11. Hertzberg RW. Deformation and fracture mechanics of engineering materials. John Wiley Sons. 1983;697.

  12. •• Lawn B. Fracture of brittle solids. Cambridge Univ. Press. 2nd ed. Cambridge: Cambridge University Press; 1975;47. A basic textbook on brittle fracture.

  13. Mish E ACH. Contemporary implant dentistry. Mosby Elsevier. Elsevier Health Sciences; 2008. p. 8–13.

  14. Cilla M, Checa S, Duda GN. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty. J. Orthop Res. 2017.

  15. Brunski JB. Biomechanical factors affecting the bone-dental implant Interface. Clin Mater. 1992;10:153–201.

    Article  CAS  PubMed  Google Scholar 

  16. Buschang PH, Throckmorton GS, Travers KH, Johnson G. The effects of bolus size and chewing rate on masticatory performance with artificial test foods. J Oral Rehabil. Blackwell Publishing Ltd. 1997;24:522–6.

    Article  CAS  PubMed  Google Scholar 

  17. •• Shemtov-Yona K, Rittel D. Random spectrum loading of dental implants: an alternative approach to functional performance assessment. J. Mech. Behav. Biomed. Mater. 2016;62:1–9. A new methodology for fatigue testing of dental implants.

    Article  CAS  PubMed  Google Scholar 

  18. ISO. 14801-Dynamic loading test for endosseous dental implants. 2016.

  19. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine grained materials by severe plastic deformation. JOM. Springer-Verlag. 2006;58:33–9.

    Article  Google Scholar 

  20. Medvedev AE, Lapovok R, Estrin Y, Lowe TC, Anumalasetty VN. Bending fatigue testing of commercial purity titanium for dental implants. Adv Eng Mater 2016;1–8.

  21. Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. Blackwell Publishing Ltd. 2010;21:772–7.

  22. • Papaspyridakos P, Mokti M, Chen C-J, Benic GI, Gallucci GO, Chronopoulos V. Implant and prosthodontic survival rates with implant fixed complete dental prostheses in the edentulous mandible after at least 5 years: a systematic review. Clin. Implant Dent. Relat. Res. 2014;16:705–17. A systematic review.

    Article  PubMed  Google Scholar 

  23. • Pommer B, Bucur L, Zauza K, Tepper G, Hof M, Watzek G. Meta-analysis of oral implant fracture incidence and related determinants. J. Oral Implantol. 2014;2014:1–7. A systematic review.

    Article  Google Scholar 

  24. Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials. 2002;23:2459–65.

    Article  CAS  PubMed  Google Scholar 

  25. • Shemtov-Yona K, Rittel D. Identification of failure mechanisms in retrieved fractured dental implants. Eng. Fail. Anal. 2014;38:58–65. Systematic identification of implant failure by fatigue.

    Article  CAS  Google Scholar 

  26. •• Suresh S. Fatigue of materials. Cambridge University Press; 1998. Reference textbook on fatigue.

  27. Schijve J. Fatigue of structures and materials. Fatigue Struct Mater. 2009.

  28. Styles CM, Evans SL, Gregson PJ. Development of fatigue lifetime predictive test methods for hip implants: part I. Test Methodol Biomater. 1998;19:1057–65.

    Article  CAS  Google Scholar 

  29. Shemtov-Yona K, Rittel D. Fatigue of dental implants: facts and fallacies. Dent J. Multidisciplinary Digital Publishing Institute. 2016;4:16.

  30. Gui J, Xie Z. Phase transformation and slow crack growth study of Y-TZP dental ceramic. Mater Sci Eng A. Elsevier. 2016;676:531–5.

  31. Bathe KJ, Saunders H. Finite element procedures in engineering analysis. J Press Vessel Technol 1984. p. 421. Englewood Cliffs: Prentice-Hall.

  32. Ayllón JM, Navarro C, Vázquez J, Domínguez J. Fatigue life estimation in dental implants. Eng Fract Mech. 2014;123:34–43.

    Article  Google Scholar 

  33. Milella PP. Fatigue and corrosion in metals. Fatigue Corros. Met. 2013.

  34. Cruz HV, Henriques M, Teughels W, Celis J-P, Rocha LA. Combined influence of fluoride and biofilms on the biotribocorrosion behavior of titanium used for dental applications. J Bio Tribo Corrosion. 2015;1:21.

    Article  Google Scholar 

  35. •• Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res. 2003;65:188–95. Recipes of bodily-like fluids.

    Article  Google Scholar 

  36. Shemtov-Yona K, Rittel D. Fatigue failure of dental implants in simulated intraoral media. J Mech Behav Biomed Mater. Elsevier. 2016;62:636–44.

  37. Shemtov-Yona K, Rittel D, Levin L, Machtei EE. The effect of oral-like environment on dental implants’ fatigue performance. Clin Oral Implants Res. 2014;25:E166–70.

    Article  PubMed  Google Scholar 

  38. Doi K, Miyabe S, Tsuchiya H, Fujimoto S. Degradation of Ti-6Al-4V alloy under cyclic loading in a simulated body environment with cell culturing. J Mech Behav Biomed Mater. Elsevier. 2016;56:6–13.

  39. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399–410.

    Article  CAS  PubMed  Google Scholar 

  40. •• Bhushan B. Introduction to tribology, Second Edition. Introd. to Tribol. Second Ed. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK: John Wiley & Sons, Ltd; 2013. A basic reference on tribology, surface roughness etc.

  41. Ferguson SJ, Langhoff JD, Voelter K, von Rechenberg B, Scharnweber D, Bierbaum S, et al. Biomechanical comparison of different surface modifications for dental implants. Int J Oral Maxillofac Implants. 2008;23:1037–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19216272.

  42. Chen J, Rungsiyakull C, Li W, Chen Y, Swain M, Li Q. Multiscale design of surface morphological gradient for osseointegration. J Mech Behav Biomed Mater. Elsevier. 2013;20:387–97.

    Article  PubMed  Google Scholar 

  43. Coelho PG, Bonfante EA, Pessoa RS, Marin C, Granato R, Giro G, et al. Characterization of five different implant surfaces and their effect on osseointegration: a study in dogs. J. Periodontol. 2011;82:742–50.

    Article  PubMed  Google Scholar 

  44. Huang HL, Hsu JT, Fuh LJ, Lin DJ, Chen MYC. Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Comput Biol Med. Elsevier. 2010;40:525–32.

    Article  PubMed  Google Scholar 

  45. Barriuso S, Lieblich M, Multigner M, Etxeberria I, Alberdi A, González-Carrasco JL. Roughening of metallic biomaterials by abrasiveless waterjet peening: characterization and viability. Wear. 2011;270:634–9.

    Article  CAS  Google Scholar 

  46. Shemtov-Yona K, Rittel D, Dorogoy A. Mechanical assessment of grit blasting surface treatments of dental implants. J Mech Behav Biomed Mater. 2014;39:375–90.

    Article  CAS  PubMed  Google Scholar 

  47. Arola D, McCain ML, Kunaporn S, Ramulu M. Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress. Wear. 2001;249:943–50.

    Article  CAS  Google Scholar 

  48. Fadida R, Rittel D, Shirizly A. Dynamic mechanical behavior of additively manufactured Ti6Al4V with controlled voids. J Appl Mech. 2015;82:41004.

    Article  Google Scholar 

  49. Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. BDJ. Nature Publishing Group. 2015;218:E9.

  50. •• Gibson LJ, Ashby MF, Harley BA. Cellular materials in nature and medicine. Cambridge University Press; 2010. A basic reference on the mechanics of cellular media.

  51. Schwartz-Dabney CL, Dechow PC. Edentulation alters material properties of cortical bone in the human mandible. J Dent Res. SAGE Publications. 2002;81:613–7.

  52. Schwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120:252–77.

    Article  CAS  PubMed  Google Scholar 

  53. Nomura T, Gold E, Powers MP, Shingaki S, Katz JL. Micromechanics/structure relationships in the human mandible. Dent Mater. 2003;19:167–73.

    Article  PubMed  Google Scholar 

  54. O’Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin. Oral Implants Res. 2000;11:415–21.

    Article  PubMed  Google Scholar 

  55. O’Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin. Oral Implants Res. 2001;12:648–57.

    Article  PubMed  Google Scholar 

  56. Lakatos É, Magyar L, Bojtár I. Material properties of the mandibular trabecular bone. J. Med. Eng. 2014;2014:7.

    Article  Google Scholar 

  57. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999;57:700–6.

    Article  CAS  PubMed  Google Scholar 

  58. Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92–102.

    Article  CAS  PubMed  Google Scholar 

  59. Natali AN, Carniel EL, Pavan PG. Modelling of mandible bone properties in the numerical analysis of oral implant biomechanics. Comput Methods Prog Biomed. Elsevier Ireland Ltd. 2010;100:158–65.

  60. Bahrami B, Shahrbaf S, Mirzakouchaki B, Ghalichi F, Ashtiani M, Martin N. Effect of surface treatment on stress distribution in immediately loaded dental implants—a 3D finite element analysis. Dent Mater. The Academy of Dental Materials. 2014;30:e89–97.

  61. Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone. Elsevier Inc. 2016;93:196–211.

    Article  PubMed  Google Scholar 

  62. Lee C-S, Lee J-M, Youn B, Kim H-S, Shin JK, Goh TS, et al. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. J Mech Behav Biomed Mater. Elsevier. 2017;65:213–23.

    Article  PubMed  Google Scholar 

  63. Baumann AP, Shi X, Roeder RK, Niebur GL. The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model. Comput. Methods Biomech. Biomed. Engin. Taylor & Francis. 2016;19:465–73.

    Article  PubMed  Google Scholar 

  64. Pawlikowski M, Barcz K. Non-linear viscoelastic constitutive model for bovine cortical bone tissue. Biocybern. Biomed. Eng. Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. 2016;36:491–8.

    Article  Google Scholar 

  65. •• Zysset PK, Schwiedrzik J, Wolfram U. European Society of Biomechanics S.M. Perren award 2016: a statistical damage model for bone tissue based on distinct compressive and tensile cracks. J. Biomech. Elsevier. 2016;49:3616–25. Recent sophisticated constitutive model for the bone tissue.

    Article  Google Scholar 

  66. Bekker A, Kok S, Cloete TJ, Nurick GN. Introducing objective power law rate dependence into a visco-elastic material model of bovine cortical bone. Int J Impact Eng. Elsevier Ltd. 2014;66:28–36.

    Article  Google Scholar 

  67. Halldin A, Ander M, Jacobsson M, Hansson S. On a constitutive material model to capture time dependent behavior of cortical bone. World J Mech. Scientific Research Publishing. 2014;4:348–61.

    Article  Google Scholar 

  68. Johnson TPM, Socrate S, Boyce MC. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater. Acta Materialia Inc. 2010;6:4073–80.

    Article  CAS  PubMed  Google Scholar 

  69. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004;37:27–35.

    Article  PubMed  Google Scholar 

  70. Natali AN. Dental biomechanics. 2003.

  71. Currey JD. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech. 2004;37:549–56.

    Article  PubMed  Google Scholar 

  72. Kemper A, Mcnally C, Kennedy E, Manoogian S, Tech V, Forest W, et al. The material properties of human tibia cortical bone. Biomed Sci Instrum. 2008;44:419–27.

    PubMed  Google Scholar 

  73. Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg. 2010;39:690–8.

    Article  CAS  PubMed  Google Scholar 

  74. Moreo P, Pérez MA, García-Aznar JM, Doblaré M. Modelling the mechanical behaviour of living bony interfaces. Comput Methods Appl Mech Eng. 2007;196:3300–14.

    Article  Google Scholar 

  75. Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 1: mathematical model. J Theor Biol. 2009;260:1–12.

    Article  PubMed  Google Scholar 

  76. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  77. • Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Numerical prediction of peri-implant bone adaptation: comparison of mechanical stimuli and sensitivity to modeling parameters. Med Eng Phys. 2016;38:1348–59. Elsevier Ltd. Identification of the role of the octahedral shear strain with respect to bone remodelling.

    Article  PubMed  Google Scholar 

  78. Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofacial Radiol. British Institute of Radiology. 2008;37:10–7.

    Article  CAS  Google Scholar 

  79. Smith BD. Cone-beam tomography: recent advances and a tutorial review. Opt Eng. International Society for Optics and Photonics. 1990;29:524–34.

  80. Vanegas-Acosta JC, Landinez PNS, Garzón-Alvarado DA, MC CR. A finite element method approach for the mechanobiological modeling of the osseointegration of a dental implant. Comput Methods Prog Biomed. Elsevier Ireland Ltd. 2011;101:297–314.

    Article  CAS  Google Scholar 

  81. Harrison NM, McDonnell P, Mullins L, Wilson N, O’Mahoney D, McHugh PE. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol. 2013;12:225–41.

    Article  PubMed  Google Scholar 

  82. Giner E, Arango C, Vercher A, Javier FF. Numerical modelling of the mechanical behaviour of an osteon with microcracks. J Mech Behav Biomed Mater. Elsevier. 2014;37:109–24.

    Article  CAS  PubMed  Google Scholar 

  83. Adams JJE, Adams MAMF, Pollintine P, Tobias JH, Wakley GK, Dolan P, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the canadian bone strength working group. J Biomech. 2009;43:136–46.

    Google Scholar 

  84. Narra N, Antalainen A-K, Zipprich H, Sandor GK, Wolff J. Microcomputed tomography-based assessment of retrieved dental implants. Int J Oral Maxillofac Implants. 2015;30:308–14.

    Article  PubMed  Google Scholar 

  85. Lee J, Ozdoganlar OB, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med EngPhys. Institute of Physics and Engineering in Medicine. 2012;34:1510–20.

    Article  Google Scholar 

  86. Alam K, Mitrofanov AV, Silberschmidt VV. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Med Eng Phys. Institute of Physics and Engineering in Medicine. 2011;33:234–9.

  87. Dorogoy A, Rittel D, Shemtov-Yona K, Korabi R. Modeling dental implant insertion. J Mech Behav Biomed Mater. Elsevier. 2017;68:42–50.

    Article  CAS  PubMed  Google Scholar 

  88. Duyck J, Roesems R, Cardoso MV, Ogawa T, De Villa CG, Vandamme K. Effect of insertion torque on titanium implant osseointegration: an animal experimental study. Clin Oral Implants Res. 2015;26:191–6.

    Article  PubMed  Google Scholar 

  89. Miller RE, Tadmor EB. The quasicontinuum method: overview, applications and current directions. J Comput Mater Des. 2002;9:203–39.

    Article  CAS  Google Scholar 

  90. Frost HM. A 2003 update of bone physiology and Wolff s law for clinicians. Angle Orthod. 2004:3–15.

  91. Wolff J, Narra N, Antalainen A-K, Valášek J, Kaiser J, Sándor GK, et al. Finite element analysis of bone loss around failing implants. Mater Des. 2014;61:177–84.

    Article  Google Scholar 

  92. Eser A, Tonuk E, Akca K, Dard MM, Cehreli MC. Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J Biomech. 2013;46:2250–7.

    Article  PubMed  Google Scholar 

  93. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent. 2008;36:409–17.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rittel.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Dental Restorative Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rittel, D., Shemtov-Yona, K. & Korabi, R. Engineering Dental Implants. Curr Oral Health Rep 4, 239–247 (2017). https://doi.org/10.1007/s40496-017-0148-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-017-0148-9

Keywords

Navigation