Skip to main content

Advertisement

Log in

Simple, inexpensive, and ergonomic phantom for quality assurance control of MRI guided Focused Ultrasound systems

  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

The popularity of Magnetic Resonance guided Focused Ultrasound (MRgFUS) as a beneficial therapeutic solution for many diseases is increasing rapidly, thus raising the need for reliable quality assurance (QA) phantoms for routine testing of MRgFUS systems. In this study, we propose a thin acrylic film as the cheapest and most easily accessible phantom for assessing the functionality of MRgFUS hardware and software.

Methods

Through the paper, specific QA tests are detailed in the framework of evaluating an MRgFUS preclinical robotic device comprising a single element spherically focused transducer with a nominal frequency of 2.75 MHz. These tests take advantage of the reflection of ultrasonic waves at a plastic–air interface, which results in almost immediate lesion formation on the film at a threshold of applied acoustic energy.

Results

The phantom offered qualitative information on the power field distribution of the FUS transducer and the ability to visualize different FUS protocols. It also enabled quick and reliable assessment of various navigation algorithms as they are used in real treatments, and also allowed for the assessment of the accuracy of robotic motion.

Conclusion

Therefore, it could serve as a useful tool for detecting defects in system’s performance over its lifetime after establishing a baseline while concurrently contributing to establish QA and calibration guidelines for clinical routine controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abe K, Taira T (2017) Focused ultrasound treatment, present and future. Neurol Med Chir (Tokyo) 57:386–391. https://doi.org/10.2176/nmc.ra.2017-0024

    Article  PubMed  Google Scholar 

  2. Damianou C, Giannakou M, Menikou G, Ioannou L (2020) Magnetic resonance imaging-guided focused ultrasound robotic system with the subject placed in the prone position. Digit Med 6:24–31. https://doi.org/10.4103/digm.digm_2_20

    Article  Google Scholar 

  3. Drakos T, Giannakou M, Menikou G, Filippou A, Evripidou N, Spanoudes K et al (2021) MRI-guided focused ultrasound robotic system for preclinical use. J Vet Med Anim Sci 4:1–11

    Google Scholar 

  4. Antoniou A, Giannakou M, Evripidou N, Stratis S, Pichardo S, Damianou C (2022) Robotic system for top to bottom MRgFUS therapy of multiple cancer types. Int J Med Robot Comput Assist Surg 18(2):e2364. https://doi.org/10.1002/rcs.2364

    Article  Google Scholar 

  5. Antoniou A, Giannakou M, Evripidou N, Evripidou G, Spanoudes K, Menikou G et al (2021) Robotic system for magnetic resonance guided focused ultrasound ablation of abdominal cancer. Int J Med Robot Comput Assist Surg. https://doi.org/10.1002/rcs.2299

    Article  Google Scholar 

  6. Giannakou M, Drakos T, Menikou G, Evripidou N, Filippou A, Spanoudes K et al (2021) MRI-guided focused ultrasound robotic system for transrectal prostate cancer therapy. Int J Med Robot Comput Assist Surg 17(3):e2237. https://doi.org/10.1002/rcs.2237

    Article  Google Scholar 

  7. Dabbagh A, Abdullah BJJ, Ramasindarum C, Abu Kasim NH (2014) Tissue-mimicking gel phantoms for thermal therapy studies. Ultrason Imaging 36:291–316. https://doi.org/10.1177/0161734614526372

    Article  PubMed  Google Scholar 

  8. Antoniou A, Damianou C (2022) MR relaxation properties of tissue-mimicking phantoms. Ultrasonics. https://doi.org/10.1016/j.ultras.2021.106600

    Article  PubMed  Google Scholar 

  9. Filippou A, Drakos T, Giannakou M, Evripidou N, Damianou C (2021) Experimental evaluation of the near-field and far-field heating of focused ultrasound using the thermal dose concept. Ultrasonics 116:106513. https://doi.org/10.1016/j.ultras.2021.106513

    Article  PubMed  Google Scholar 

  10. Zhou Y, Kargl SG, Hwang JH (2011) The effect of the scanning pathway in high-intensity focused ultrasound therapy on lesion production. Ultrasound Med Biol 37:1457–1468. https://doi.org/10.1016/j.ultrasmedbio.2011.05.848

    Article  PubMed  Google Scholar 

  11. Eranki A, Mikhail AS, Negussie AH, Katti PS, Wood BJ, Partanen A (2019) Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications. Int J Hyperth 36:518–529. https://doi.org/10.1080/02656736.2019.1605458

    Article  CAS  Google Scholar 

  12. Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H (2004) Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med Biol 30:1419–1422. https://doi.org/10.1016/j.ultrasmedbio.2004.07.016

    Article  PubMed  Google Scholar 

  13. Antoniou A, Georgiou L, Christodoulou T, Panayiotou N, Ioannides C, Zamboglou N et al (2022) MR relaxation times of agar-based tissue-mimicking phantoms. J Appl Clin Med Phys. https://doi.org/10.1002/acm2.13533

    Article  PubMed  PubMed Central  Google Scholar 

  14. Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR (2005) Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys Med Biol 50:5597–5618. https://doi.org/10.1088/0031-9155/50/23/013

    Article  PubMed  PubMed Central  Google Scholar 

  15. Menikou G, Dadakova T, Pavlina M, Bock M, Damianou C (2015) MRI compatible head phantom for ultrasound surgery. Ultrasonics 57:144–152. https://doi.org/10.1016/j.ultras.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  16. Menikou G, Yiannakou M, Yiallouras C, Ioannides C, Damianou C (2018) MRI-compatible breast/rib phantom for evaluating ultrasonic thermal exposures. Int J Med Robot Comput Assist Surg 14:1–12. https://doi.org/10.1002/rcs.1849

    Article  Google Scholar 

  17. Menikou G, Yiannakou M, Yiallouras C, Ioannides C, Damianou C (2016) MRI-compatible bone phantom for evaluating ultrasonic thermal exposures. Ultrasonics 71:12–19. https://doi.org/10.1016/j.ultras.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  18. Antoniou A, Drakos T, Giannakou M, Evripidou N, Georgiou L, Christodoulou T et al (2021) Simple methods to test the accuracy of MRgFUS robotic systems. Int J Med Robot Comput Assist Surg. https://doi.org/10.1002/rcs.2287

    Article  Google Scholar 

  19. Yiallouras C, Mylonas N, Damianou C (2014) MRI-compatible positioning device for guiding a focused ultrasound system for transrectal treatment of prostate cancer. Int J Comput Assist Radiol Surg 9:745–753. https://doi.org/10.1007/s11548-013-0964-x

    Article  PubMed  Google Scholar 

  20. Chen L, Ma C, Meyer J (2014) Quality assurance for MR guided focused ultrasound treatment of bone metastasis: a clinical experience. Int J Radiat Oncol 90:S703. https://doi.org/10.1016/j.ijrobp.2014.05.2059

    Article  Google Scholar 

  21. Mcdannold N, Hynynen K (2006) Quality assurance and system stability of a clinical MRI-guided focused ultrasound system: four-year experience. Med Phys 33:4307–4313. https://doi.org/10.1118/1.2352853

    Article  PubMed  Google Scholar 

  22. Gorny KR, Hangiandreou NJ, Hesley GK, Gostout BS, McGee KP, Felmlee JP (2006) MR guided focused ultrasound: technical acceptance measures for a clinical system. Phys Med Biol 51:3155–3173. https://doi.org/10.1088/0031-9155/51/12/011

    Article  CAS  PubMed  Google Scholar 

  23. Vicari F, Russo G, Cammarata FP, Cirincione R, Forte GI, Borasi G et al (2014) A daily quality assurance routine for ultrasounds in vitro experiments. Transl Cancer Res 3:421–429. https://doi.org/10.3978/j.issn.2218-676X.2014.09.02

    Article  CAS  Google Scholar 

  24. Schätzle U, Reuner T, Jenne J, Heilingbrunner A (1998) Quality assurance tools for therapeutic ultrasound. Ultrasonics 36:679–682. https://doi.org/10.1016/S0041-624X(97)00138-8

    Article  PubMed  Google Scholar 

  25. Acri G, Caridi F, Testagrossa B, Gurgone S, Anfuso C, Paladini G, et al. (2022) A “user-friendly” phantom to conduct Quality Controls on MRgFUS device. J Phys Conf Ser, vol. 2162, IOP Publishing; p. 012004. https://doi.org/10.1088/1742-6596/2162/1/012004

  26. Ambrogio S, Baêsso RM, Bosio F, Fedele F, Ramnarine KV, Zeqiri B et al (2022) A standard test phantom for the performance assessment of magnetic resonance guided high intensity focused ultrasound (MRgHIFU) thermal therapy devices. Int J Hyperth 39:57–68. https://doi.org/10.1080/02656736.2021.2017023

    Article  CAS  Google Scholar 

  27. Antoniou A, Evripidou N, Giannakou M, Constantinides G, Damianou C (2021) Acoustical properties of 3D printed thermoplastics. J Acoust Soc Am 149:2854–2864. https://doi.org/10.1121/10.0004772

    Article  PubMed  Google Scholar 

  28. Curiel L, Chavrier F, Gignoux B, Pichardo S, Chesnais S, Chapelon JY (2004) Experimental evaluation of lesion prediction modelling in the presence of cavitation bubbles: Intended for high-intensity focused ultrasound prostate treatment. Med Biol Eng Comput 42:44–54. https://doi.org/10.1007/BF02351010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was co-funded by the European Structural & Investment Funds (ESIF) and the Republic of Cyprus through the Research and Innovation Foundation (RIF) under the project SOUNDPET (INTEGRATED/0918/0008).

Funding

This research was supported by Research and Innovation Foundation of Cyprus, SOUNDPET (INTEGRATED/0918/0008).

Author information

Authors and Affiliations

Authors

Contributions

AA contributed to the drafting of manuscript and scientific methods. CD had the overall supervision of the study.

Corresponding author

Correspondence to Christakis Damianou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethical approval

The study does not involve animals or human participants.

Consent to participate/consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoniou, A., Damianou, C. Simple, inexpensive, and ergonomic phantom for quality assurance control of MRI guided Focused Ultrasound systems. J Ultrasound 26, 401–408 (2023). https://doi.org/10.1007/s40477-022-00740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-022-00740-w

Keywords

Navigation