Skip to main content

Advertisement

Log in

Can strain US-elastography with strain ratio (SRE) improve the diagnostic accuracy in the assessment of breast lesions? Preliminary results

  • Original Paper
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

To assess the diagnostic value of strain ratio elastography (SRE), a semiquantitative elastosonographic method based on the displacement of the tissue from an external source (manual compression with the transducer), as compared and in combination with conventional ultrasound for the differentiation of breast lesions.

Methods

One hundred and eighty-two patients with breast lesions consecutively underwent B-mode, color Doppler US, and strain US-elastography. Each lesion was classified according to the BI-RADS lexicon by evaluating the size, the B-mode, and color Doppler features and then evaluated by SRE. Histology proven by biopsy was used as the gold standard and the patients with malignant lesions subsequently underwent operations. The diagnostic performance of each method was assessed with 2 × 2 contingency tables and ROC curve analysis. To maximize the SRE sensitivity and specificity, the SRE cut-off value was calculated using the Youden test.

Results

Histological examination revealed 66 benign and 116 malignant breast lesions. The conventional ultrasound showed sensitivity and specificity for the differentiation of benign and malignant lesions of 86.2% and 75.8%, respectively. Similar results were found for strain US-elastography with a cut-off of 2.49, with sensitivity and specificity of 89.7% and 72.7%, respectively. The association of conventional ultrasound with the SRE value increased the sensitivity (98.3%) but decreased the specificity compared with conventional US alone (63.6%).

Conclusion

Strain US-elastography can be associated with BI-RADS US examination. According to our preliminary results, it helped increase the sensitivity although it decreased the specificity. However, further multicenter studies on a larger population are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under curve

AUROC:

Area under the receiver operating characteristic curve

BI-RADS:

Breast imaging, reporting and data system

EFSUMB:

European Federation of Ultrasound in Medicine and Biology

NPV:

Negative predictive value

PPV:

Positive predictive value

ROC:

Receiver operation characteristic

ROI:

Region of interest

SRE:

Strain ratio elastography

US:

Ultrasound

WFUMB:

World Federation of Ultrasound in Medicine and Biology

References

  1. Hooley RJ, Scoutt LM, Philpotts LE (2013) Breast ultrasonography: state of the art. Radiology 268:642–659

    Article  Google Scholar 

  2. Carlino G, Rinaldi P, Giuliani M, Rella R, Bufi E, Padovano F, Ciardi C, Romani M, Belli P, Manfredi R (2019) J Ultrasound 22(1):85–94. https://doi.org/10.1007/s40477-018-0335-0(Epub2018Oct26.Ultrasound-guidedpreoperativelocalizationofbreastlesions:agoodchoice)

    Article  PubMed  Google Scholar 

  3. Park CS, Lee JH, Yim HW et al (2007) Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, First Edition (2003). Korean J Radiol 8(5):397–402

  4. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH, Klauser AS, Sporea I, Calliada F, Cantisani V, D'Onofrio M, Drakonaki EE, Fink M, Friedrich-Rust M, Fromageau J, Havre RF, Jenssen C, Ohlinger R, Săftoiu A, Schaefer F, Dietrich CF (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 34(3):238–253

  5. Săftoiu A, Gilja OH, Sidhu PS, Dietrich CF, Cantisani V, Amy D, Bachmann-Nielsen M, Bob F, Bojunga J, Brock M, Calliada F, Clevert DA, Correas JM, D'Onofrio M, Ewertsen C, Farrokh A, Fodor D, Fusaroli P, Havre RF, Hocke M, Ignee A, Jenssen C, Klauser AS, Kollmann C, Radzina M, Ramnarine KV, Sconfienza LM, Solomon C, Sporea I, Ștefănescu H, Tanter M, Vilmann P (2019) The EFSUMB guidelines and recommendations for the clinical practice of elastography in non-hepatic applications: update 2018. Ultraschall Med 40(4):425–453. https://doi.org/10.1055/a-0838-9937(Epub2019Jun25)

    Article  PubMed  Google Scholar 

  6. Barr RG, Nakashima K, Amy D et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol 41(5):1148–1160

    Article  Google Scholar 

  7. Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS (2018) Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging 9:791–814

    Article  Google Scholar 

  8. Cantisani V, Bertolotto M, Weskott HP, Romanini L, Grazhdani H, Passamonti M, Drudi FM, Malpassini F, Isidori A, Meloni FM, Calliada F, D’Ambrosio F (2015) Growing indications for CEUS: The kidney, testis, lymph nodes, thyroid, prostate, and small bowel. Eur J Radiol 84(9):1675–1684

    Article  CAS  Google Scholar 

  9. Pozza C, Gianfrilli D, Fattorini G et al (2016) Diagnostic value of qualitative and strain ratio elastography in the differential diagnosis of non-palpable testicular lesions. Andrology 4(6):1193–1203. https://doi.org/10.1111/andr.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamaya A, Machtaler S, Safari Sanjani S, Nikoozadeh A, Graham Sommer F, Pierre Khuri-Yakub BT et al (2013) New technologies in clinical ultrasound. Semin Roentgenol 48:214–223

    Article  Google Scholar 

  11. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA et al (2013) ACR BI-RADS® Atlas, breast imaging reporting and data system. American College of Radiology, Reston

    Google Scholar 

  12. Mendelson EB, Böhm-Vélez M, Berg WA et al (2013) ACR BI-RADS® Ultrasound. In: ACR BI-RADS® atlas, breast imaging reporting and data system. American College of Radiology, Reston

  13. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Article  CAS  Google Scholar 

  14. Barr RG, Zhang J et al (2012) Effects of precompression on elasticity imaging of the breast development of a clinically useful semiquantitative method of precompression assessment. Ultrasound Med 31:895–902 (PubMed)

  15. Goksuluk D, Korkmaz S, Zararsiz G et al (2016) easyROC: an interactive web-tool for ROC curve analysis using R language environment. R J 8:213–230

    Article  Google Scholar 

  16. Bartolotta TV, Orlando AAM, Di Vittorio ML et al (2020) S-Detect characterization of focal solid breast lesions: a prospective analysis of inter-reader agreement for US BI-RADS descriptors. J Ultrasound. https://doi.org/10.1007/s40477-020-00476-5

    Article  PubMed  Google Scholar 

  17. Xiao X, Jiang Q, Wu H, Guan X, Qin W, Luo B (2017) Diagnosis of sub-centimetre breast lesions: combining BI-RADS-US with strain elastography and contrast-enhanced ultrasound—a preliminary study in China. Eur Radiol 27:2443–2450

    Article  Google Scholar 

  18. Suh CH, Choi YJ, Baek JH, Lee JH (2017) The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: a systematic review and meta-analysis. Eur Radiol 27(1):222–230

    Article  Google Scholar 

  19. Cantisani V, Grazhdani H, Ricci P et al (2014) Q-elastosonography of solid thyroid nodules: assessment of diagnostic efficacy and interobserver variability in a large patient cohort. Eur Radiol 24:143–150

    Article  Google Scholar 

  20. Cantisani V, David E, Grazhdani H, Rubini A, Radzina M, Dietrich CF, Durante C, Lamartina L, Grani G, Valeria A, Bosco D, Di Gioia C, Frattaroli FM, D'Andrea V, De Vito C, Fresilli D, D'Ambrosio F, Giacomelli L, Catalano C (2019) Ultraschall Med 40(4):495–503. https://doi.org/10.1055/a-0853-1821[Epub 2019 May 28. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization]

  21. Cantisani V, Grazhdani H, Drakonaki E, D'Andrea V, Di Segni M, Kaleshi E, Calliada F, Catalano C, Redler A, Brunese L, Drudi FM, Fumarola A, Carbotta G, Frattaroli F, Di Leo N, Ciccariello M, Caratozzolo M, D'Ambrosio F (2015) Int J Endocrinol 2015:908575. https://doi.org/10.1155/2015/908575(Epub 2015 Apr 14. Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation)

  22. Fresilli D, Grani G, De Pascali ML, Alagna G, Tassone E, Ramundo V, Ascoli V, Bosco D, Biffoni M, Bononi M, D'Andrea V, Frattaroli F, Giacomelli L, Solskaya Y, Polti G, Pacini P, Guiban O, Gallo Curcio R, Caratozzolo M, Cantisani V (2020) J Ultrasound 23(2):169–174. https://doi.org/10.1007/s40477-020-00453-y(Epub2020Apr3.Computer-aideddiagnosticsystemforthyroidnodulesonographicevaluationoutperformsthespecificityoflessexperiencedexaminers)

    Article  PubMed  Google Scholar 

  23. Tan M, Teh HS, Mancer JF, Poh WT (2008) Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography–a clinical approach. Breast 17(3):252–257

    Article  CAS  Google Scholar 

  24. Chiorean A, Duma MM, Dudea SM, Iancu A et al (2008) Real-time ultrasound elastography of the breast: state of the art. Med Ultrasonography 10:73–82

    Google Scholar 

  25. Cantisani V, David E, Barr RG et al (2020) US-elastography for breast lesion characterization: prospective comparison of US BIRADS, strain elastography and shear wave elastography [published online ahead of print, 2020 Apr 24]. US-Elastografie zur Charakterisierung von Brustläsionen: Prospektiver Vergleich von US-BI-RADS, Strain-Elastografie und Scherwellen-Elastografie [published online ahead of print, 2020 Apr 24]. Ultraschall Med. https://doi.org/10.1055/a-1134-4937

  26. Nakashima K, Moriya T (2013) Comprehensive ultrasound diagnosis for intraductal spread of primary breast cancer. Breast Cancer 20(1):3–12

    Article  Google Scholar 

  27. Ueno E, Umemoto T, Bando H, Tohno E, Waki K, Matsumura T (2007) New quantitative method in breast elastography: fat lesion ratio (FLR). In: Radiological society of North America 2007 scientific assembly and annual meeting, 25–30 November, Chicago, IL. http://archive.rsna.org/2007/5015476.html

  28. Chen L, He J, Liu G et al (2014) Diagnostic performances of shear-wave elastography for identification of malignant breast lesions: a meta-analysis. Jpn J Radiol 32:592–599

    Article  CAS  Google Scholar 

  29. Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 134(3):923–931

    Article  Google Scholar 

  30. Farrokh A, Wojcinski S, Degenhardt F (2011) Diagnostic value of strain ratio measurement in the differentiation of malignant and benign breast lesions. Ultraschall Med 32:400–405 (PubMed)

  31. Alhabshi SM, Rahmat K, Abdul Halim N, Aziz S, Radhika S, Gan GC, Vijayananthan A, Westerhout CJ, Mohd-Shah MN, Jaszle S, Harlina Mohd Latar N, Muhammad R (2013) Semi-quantitative and qualitative assessment of breast ultrasound elastography in differentiating between malignant and benign lesions. Ultrasound Med Biol 39(4):568–578

    Article  Google Scholar 

Download references

Funding

This work received no specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Elia.

Ethics declarations

Conflict of interest

Federica Pediconi lectured for Bracco, Bayer and Siemens; Vito Cantisani lectured for Bracco, Samsung and Canon. The other authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elia, D., Fresilli, D., Pacini, P. et al. Can strain US-elastography with strain ratio (SRE) improve the diagnostic accuracy in the assessment of breast lesions? Preliminary results. J Ultrasound 24, 157–163 (2021). https://doi.org/10.1007/s40477-020-00505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-020-00505-3

Keywords

Navigation