Skip to main content
Log in

Triatoma infestans (Hemiptera: Reduviidae) Population Genetics: What Have We Learned from Microsatellites?

  • REVIEW
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The genetic structure of insect vectors offers valuable insights for identifying panmictic units, reinfestation sources, and minimal intervention units in vector control programs. This review highlights key findings on the genetic structure of Triatoma infestans populations using microsatellites across various geographic scales and landscapes.

Recent Findings

Microsatellites have been employed to explore the genetic structure of T. infestans across Argentina, Bolivia, Paraguay, Brazil, and Peru. Research has focused on understanding genetic structure, assessing the impacts of short and long-distance migration, identifying sources of reinfestation post-insecticide spraying, evaluating the effects of insecticides on variability, and investigating the potential contribution of sylvatic foci to household infestation.

Summary

Triatoma infestans populations are highly structured across countries, landscapes, and geographical levels. Although support for the isolation-by-distance migration model is mixed, most studies point to a combination of active and passive dispersal. Insecticide spraying significantly influences genetic structure, intensifying differentiation. Reinfestation is mainly attributed to internal residual foci at the village level. Finally, the contribution of sylvatic populations to (re)infestation varies across geographic areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sarkar S. The founders of evolutionary genetics: the editor’s introduction. In: Sarkar S, editor. The founders of evolutionary genetics. Boston Studies in the Philosophy of Science. Dordrecht: Springer. 1992:1–22. https://doi.org/10.1007/978-94-011-2856-8.

  2. Hubby JL, Lewontin RC. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics. 1996;54:577–94.

    Article  Google Scholar 

  3. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107:1–8. https://doi.org/10.1016/j.ygeno.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  4. Behura SK. Molecular marker systems in insects: current trends and future avenues. Mol Ecol. 2006;15:3087–113. https://doi.org/10.1111/j.1365-294X.2006.03014.x.

    Article  CAS  PubMed  Google Scholar 

  5. Amiteye S. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon. 2021;7:e08093. https://doi.org/10.1016/j.heliyon.2021.e08093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCoy KD. The population genetic structure of vectors and our understanding of disease epidemiology. Parasite. 2008;15(3):444–8. https://doi.org/10.1051/parasite/2008153444.

    Article  CAS  PubMed  Google Scholar 

  7. Monteiro F, Marcet P, Dorn P. Population genetics of triatomines. In: Telleria J, Tibayrenc M, editors. American trypanosomiasis. Chagas disease one hundred years of research. Amsterdam: Elsevier; 2010:169–208. https://doi.org/10.1016/B978-0-12-384876-5.00008-3.

  8. Gourbière S, Dorn P, Tripet F, Dumonteil E. Genetics and evolution of triatomines: from phylogeny to vector control. Heredity. 2012;108:190–202. https://doi.org/10.1038/hdy.2011.71.

    Article  PubMed  Google Scholar 

  9. Waleckx E, Gourbière S, Dumonteil E. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Mem Inst Oswaldo Cruz. 2015;110(3):324–38. https://doi.org/10.1590/0074-02760140409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dujardin JP, Tibayrenc M, Venegas E, Maldonado L, Desjeux P, Ayala FJ. Isozyme evidence of lack of speciation between wild and domestic Triatoma infestans (Heteroptera: Reduviidae) in Bolivia. J Med Entomol. 1987;24:40–5. https://doi.org/10.1093/jmedent/24.1.40.

    Article  CAS  PubMed  Google Scholar 

  11. Noireau F, Flores R, Gutierrez T, Dujardin JP. Detection of sylvatic dark morphs of Triatoma infestans in the Bolivian Chaco. Mem Inst Oswaldo Cruz. 1997;92:583–4. https://doi.org/10.1590/S0074-02761997000500003.

    Article  CAS  PubMed  Google Scholar 

  12. Waleckx E, Depickère S, Salas R, Aliaga C, Monje M, Calle H, Buitrago R, Noireau F, Brenière SF. New discoveries of sylvatic Triatoma infestans (Hemiptera: Reduviidae) throughout the Bolivian Chaco. Am J Trop Med Hyg. 2012;86:455–8. https://doi.org/10.4269/ajtmh.2012.11-0205.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bacigalupo BA, Segura MJA, García CA, Hidalgo CJ, Galuppo GS, Cattan PE. Primer hallazgo de vectores de la enfermedad de Chagas asociados a matorrales silvestres en la Región Metropolitana. Chile Rev Méd Chile. 2006;134:1230–6. https://doi.org/10.4067/S0034-98872006001000003.

    Article  PubMed  Google Scholar 

  14. Bacigalupo A, Torres-Pérez F, Segovia V, García A, Correa J, Moreno L, Arroyo P, Cattan PE. Sylvatic foci of the Chagas disease vector Triatoma infestans in Chile: description of a new focus and challenges for control programs. Mem Inst Oswaldo Cruz. 2010;105:633–41. https://doi.org/10.1590/s0074-02762010000500006.

    Article  PubMed  Google Scholar 

  15. Rolón M, Vega MC, Román F, Gómez A, Rojas de Arias A. First report of colonies of sylvatic Triatoma infestans (Hemiptera: Reduviidae) in the Paraguayan Chaco, using a trained dog. PLoS Negl Trop Dis. 2011;5:e1026. https://doi.org/10.1371/journal.pntd.0001026.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ceballos LA, Piccinali RV, Berkunsky I, Kitron U, Gürtler RE. First finding of melanic sylvatic Triatoma infestans (Hemiptera: Reduviidae) colonies in the Argentine Chaco. J Med Entomol. 2009;46:1195–202. https://doi.org/10.1603/033.046.0530.

    Article  CAS  PubMed  Google Scholar 

  17. Ceballos LA, Piccinali RV, Marcet PL, Vazquez-Prokopec GM, Cardinal MV, Schachter-Broide J, Dujardin JP, Dotson EM, Kitron U, Gürtler RE. Hidden sylvatic foci of the main vector of Chagas disease Triatoma infestans: threats to the vector elimination campaign? PLoS Negl Trop Dis. 2011;5:e1365. https://doi.org/10.1371/journal.pntd.0001365.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dias JCP. Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusion Chagas disease: historical aspects, present situation, and perspectives. Mem Inst Oswaldo Cruz. 2007;102:11–8. https://doi.org/10.1590/S0074-02762007005000092.

    Article  PubMed  Google Scholar 

  19. de Arias AR, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F. Chagas disease control-surveillance in the Americas: the multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz. 2022;117:e210130. https://doi.org/10.1590/0074-02760210130.

    Article  PubMed  PubMed Central  Google Scholar 

  20. WHO. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec. 2015;90:33–43.

    Google Scholar 

  21. Hopkins T, Gonçalves R, Mamani J, Courtenay O, Bern C. Chagas disease in the Bolivian Chaco: persistent transmission indicated by childhood seroscreening study. Int J Inf Dis. 2019;86:175–7. https://doi.org/10.1016/j.ijid.2019.07.020.

    Article  Google Scholar 

  22. Dujardin JP, Tybayrenc M. Isoenzymes study of the principal vector of Chagas` disease: Triatoma infestans (Hemiptera: Reduviidae). Ann Soc Belg Med Trop. 1985;65:165–9.

    PubMed  Google Scholar 

  23. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989;17:6463–71. https://doi.org/10.1093/nar/17.16.6463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gemayel R, Cho J, Boeynaems S, Verstrepen KJ. Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes. 2012;3:461–80. https://doi.org/10.3390/genes3030461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdul-Muneer PM. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int. 2014;2014:691759. https://doi.org/10.1155/2014/691759.

  26. García BA, Zheng L. Pérez de Rosas AR, Segura EL Isolation and characterization of polymorphic microsatellite loci in the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). Mol Ecol Notes. 2004;4:568–71. https://doi.org/10.1111/j.1471-8286.2004.00735.x.

    Article  CAS  Google Scholar 

  27. Marcet PL, Lehmann T, Groner G, Gürtler RE, Kitron U, Dotson EM. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma infestans (Heteroptera: Reduviidae). Infect Genet Evol. 2006;6:32–7. https://doi.org/10.1016/j.meegid.2005.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcet PL. Análisis micro-geográfico de la estructura genético-poblacional de Triatoma infestans en comunidades rurales del Noroeste Argentino. Doctoral dissertation. 2009. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. 2009.

  29. Pérez de Rosas AR, Segura EL, García BA. Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol. 2007;16:1401–12. https://doi.org/10.1111/j.1365-294X.2007.03251.x. The first study of T. infestans microsatellite variation at a macrogeographic scale, comprising several Argentinean populations and including the impact of insecticide spraying over neutral variability.

    Article  CAS  PubMed  Google Scholar 

  30. Hardy O, Vekemans X. Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity. 1999;83:145–54. https://doi.org/10.1046/j.1365-2540.1999.00558.x.

    Article  PubMed  Google Scholar 

  31. Pérez de Rosas AR, Segura EL, García BA. Molecular phylogeography of the Chagas’ disease vector Triatoma infestans in Argentina. Heredity. 2011;107:71–9. https://doi.org/10.1038/hdy.2010.159.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Piccinali RV, Marcet PL, Noireau F, Kitron U, Gürtler RE, Dotson EM. Molecular population genetics and phylogeography of the Chagas disease vector Triatoma infestans in South America. J Med Entomol. 2009;46:796–809. https://doi.org/10.1603/033.046.0410.

    Article  CAS  PubMed  Google Scholar 

  33. Cortez MR, Monteiro FA, Noireau F. New insights on the spread of Triatoma infestans from Bolivia—implications for Chagas disease emergence in the Southern Cone. Inf Genet Evol. 2010;10:350–3. https://doi.org/10.1016/j.meegid.2009.12.006.

    Article  CAS  Google Scholar 

  34. Pizarro JC, Gilligan LM, Stevens L. Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca. Bolivia PLoS Negl Trop Dis. 2008;2:e202. https://doi.org/10.1371/journal.pntd.0000202. One of the first studies of T. infestans genetic structure in Bolivia, including different geographic scales.

    Article  CAS  PubMed  Google Scholar 

  35. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. https://doi.org/10.1093/genetics/155.2.945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hardy OJ, Charbonnel N, Fréville H, Heuertz M. Microsatellite allele size: a simple test to assess their significance on genetic differentiation. Genetics. 2003;163:1467–82. https://doi.org/10.1093/genetics/163.4.1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brenière SF, Salas R, Buitrago R, Brémond P, Sosa V, Bosseno MF, Waleckx E, Depickère S, Barnabé C. Wild populations of Triatoma infestans are highly connected to intra-peridomestic conspecific populations in the Bolivian Andes. PLoS ONE. 2013;8:e80786. https://doi.org/10.1371/journal.pone.0080786.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Silva LJ. Desbravamento, agricultura e doença: a doenca de Chagas no Estado de São Paulo. Cad Saude Pub. 1986;2:124–40. https://doi.org/10.1590/S0102-311X1986000200002.

    Article  Google Scholar 

  39. Belisário CJ, Pessoa GC, Silva EM, Rosa AC, Ferreira RE, Bedin C, Wilhelms T, de Mello F, Coutinho HS, Fonseca EL, Dos Santos RF, Rodrigues VL, Dias JC, Diotaiuti L. Genetic characterization of residual Triatoma infestans populations from Brazil by microsatellite. Genética. 2017;145:105–14. https://doi.org/10.1007/s10709-017-9949-y.

    Article  CAS  PubMed  Google Scholar 

  40. Piccinali RV, Gürtler RE. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco. Inf Genet Evol. 2015;34:143–52. https://doi.org/10.1016/j.meegid.2015.05.030.

    Article  Google Scholar 

  41. Marcet PL, Mora MS, Cutrera AP, Jones L, Gürtler RE, Kitron U, Dotson, EM. Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina. Inf Genet Evol. 2008;8(6):835–846. https://doi.org/10.1016/j.meegid.2008.08.002. One of the first studies of T. infestans genetic structure at a microgeographic scale comparing areas with regular and irregular vector control interventions.

  42. Rannala B, Mountain JL. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A. 1997;940:9197–201. https://doi.org/10.1073/pnas.94.17.9197.

    Article  Google Scholar 

  43. Pérez de Rosas AR, Segura EL, Fichera L, García BA. Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica. 2008;133:247–60. https://doi.org/10.1007/s10709-007-9208-8.

    Article  PubMed  Google Scholar 

  44. Pérez de Rosas AR, Segura EL, Fusco O, Guiñazú AL, García BA. Fine-scale genetic structure in populations of the Chagas’ disease vector Triatoma infestans (Hemiptera, Reduvidae). Genetica. 2013;141:107–17. https://doi.org/10.1007/s10709-013-9710-0.

    Article  PubMed  Google Scholar 

  45. Slatkin M, Voelm L. FST in a hierarchical island model. Genetics. 1991;127:627–9. https://doi.org/10.1093/genetics/127.3.627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cecere MC, Vasquez-Prokopec GM, Gürtler RE, Kitron U. Reinfestation sources for Chagas disease vector, Triatoma infestans Argentina. Emerg Infect Dis. 2006;12:1096–102. https://doi.org/10.3201/eid1207.051445.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Porcasi X, Catalá SS, Hrellac H, Scavuzzo MC, Gorla DE. Infestation of rural houses by Triatoma infestans (Hemiptera: Reduviidae) in southern area of Gran Chaco in Argentina. J Med Entomol. 2006;43(5):1060–7. https://doi.org/10.1093/jmedent/43.5.1060.

    Article  CAS  PubMed  Google Scholar 

  48. Gurevitz JM, Gaspe MS, Enriquez GF, Provecho YM, Kitron U, Gürtler RE. Intensified surveillance and insecticide-based control of the Chagas disease vector Triatoma infestans in the Argentinean Chaco. PLoS Neg Trop Dis. 2013;7:e2158. https://doi.org/10.1371/journal.pntd.0002158.

    Article  Google Scholar 

  49. Pérez-Cascales E, Sossa-Soruco VM, Brenière SF, Depickère S. Reinfestation with Triatoma infestans despite vigilance efforts in the municipality of Saipina, Santa Cruz, Bolivia: situational description two months after fumigation. Acta Trop. 2020;203:105292. https://doi.org/10.1016/j.actatropica.2019.105292.

    Article  PubMed  Google Scholar 

  50. Schofield CJ. Challenges of Chagas disease vector control in Central America. Global collaboration for development of pesticides for public health. WHO/CDS/WHOPES/GCDPP/2000. Geneva: World Health Organization. 2000:1–16.

  51. Piccinali RV, Gaunt MW, Gürtler RE. A microsatellite-based analysis of house infestation with Triatoma infestans (Hemiptera: Reduviidae) after insecticide spraying in the Argentine Chaco. J Med Entomol. 2018;55:609–19. https://doi.org/10.1093/jme/tjx256. A study of the origin of reinfestant T. infestans after insecticide spraying in the Argentine Chaco, supporting the presence of residual foci.

    Article  PubMed  Google Scholar 

  52. Piccinali RV, Gaspe MS, Nattero J, Gürtler RE. Population structure and migration in Triatoma infestans (Hemiptera: Reduviidae) from the Argentine Chaco: an integration of genetic and morphometric data. Acta Trop. 2023;247:107010. https://doi.org/10.1016/j.actatropica.2023.107010.

    Article  PubMed  Google Scholar 

  53. Piccinali RV, Marcet PL, Ceballos LA, Kitron U, Gürtler RE, Dotson EM. Genetic variability, phylogenetic relationships and gene flow in Triatoma infestans dark morphs from the Argentinean Chaco. Infect Genet Evol. 2011;11:895–903. https://doi.org/10.1016/j.meegid.2011.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Richer W, Kengne P, Cortez MR, Perrineau MM, Cohuet A, Fontenille D, Noireau F. Active dispersal by wild Triatoma infestans in the Bolivian Andes. Trop Med Int Health. 2007;12:759–64. https://doi.org/10.1111/j.1365-3156.2007.01846.x.

    Article  PubMed  Google Scholar 

  55. Rojas de Arias A, Messenger LA, Rolon M, Vega MC, Acosta N, Villalba C, Marcet PL. Dynamics of Triatoma infestans populations in the Paraguayan Chaco: population genetic analysis of household reinfestation following vector control. PLoS One. 2022;17:e0263465. https://doi.org/10.1371/journal.pone.0263465. A study of the role of sylvatic T. infestans in reinfestation in different localities from the Paraguayan Chaco.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 2015;149:70–85. https://doi.org/10.1016/j.actatropica.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  57. Fronza G, Toloza AC, Picollo MI, Spillmann C, Mougabure-Cueto GA. Geographical variation of deltamethrin susceptibility of Triatoma infestans (Hemiptera: Reduviidae) in Argentina with emphasis on a resistant focus in the Gran Chaco. J Med Entomol. 2016;53(4):880–7. https://doi.org/10.1093/jme/tjw056.

    Article  CAS  PubMed  Google Scholar 

  58. Piccinali RV, Fronza G, Mougabure-Cueto GA, Toloza AC. Genetic structure of deltamethrin-resistant populations of Triatoma infestans (Hemiptera: Reduviidae) in the Gran Chaco. Parasitol Res. 2020;119:3305–13. https://doi.org/10.1007/s00436-020-06789-y.

    Article  PubMed  Google Scholar 

  59. Marcet PL, Santo-Orihuela P, Messenger LA, Vassena C. Insights into the evolution and dispersion of pyrethroid resistance among sylvatic Andean Triatoma infestans from Bolivia. Inf Genet Evol. 2021;90:104759. https://doi.org/10.1016/j.meegid.2021.104759.

    Article  CAS  Google Scholar 

  60. Carbajal-de-la-Fuente AL, Sánchez-Casaccia P, Piccinali RV, Provecho Y, Salvá L, Meli S, Cano F, Hernández R, Nattero J. Urban vectors of Chagas disease in the American continent: a systematic review of epidemiological surveys. PLoS Negl Trop Dis. 2022;16:e0011003. https://doi.org/10.1371/journal.pntd.0011003.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Foley EA, Khatchikian CE, Hwang J, Ancca-Juárez J, Borrini-Mayori K, Quıspe-Machaca VR, Levy MZ, Brisson D, the Chagas Disease Working Group in Arequipa. Population structure of the Chagas disease vector, Triatoma infestans, at the urban–rural interface. Mol Ecol. 2013;22:5162–71. https://doi.org/10.1111/mec.12471.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Khatchikian CE, Foley EA, Barbu CM, Hwang J, Ancca-Juárez J, Borrini-Mayori K, Quıspe-Machaca VR, Naquira C, Brisson D, Levy MZ, Chagas Disease Working Group in Arequipa. Population structure of the Chagas disease vector Triatoma infestans in an urban environment. PLoS Negl Trop Dis. 2015;9:e0003425. https://doi.org/10.1371/journal.pntd.0003425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks to Dr. A. C. Toloza for his kind invitation to enroll in this review and suggestions to make it amenable.

Funding

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica, grant PICT-2020-SERIEA-1975.

Author information

Authors and Affiliations

Authors

Contributions

RVP: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing.

Corresponding author

Correspondence to Romina V. Piccinali.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccinali, R.V. Triatoma infestans (Hemiptera: Reduviidae) Population Genetics: What Have We Learned from Microsatellites?. Curr Trop Med Rep (2024). https://doi.org/10.1007/s40475-024-00317-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40475-024-00317-z

Keywords

Navigation