Skip to main content

Advertisement

Log in

Genetic structure of deltamethrin-resistant populations of Triatoma infestans (Hemiptera: Reduviidae) in the Gran Chaco

  • Genetics, Evolution, and Phylogeny - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The genetic structure of natural populations offers insight into the complexities of their dynamics, information that can be relevant to vector control strategies. Microsatellites are useful neutral markers to investigate the genetic structure and gene flow in Triatoma infestans, one of the main vectors of Chagas disease in South America. Recently, a heterogeneous pyrethroid-resistant hotspot was found in the Argentine Gran Chaco, characterized by the highest levels of deltamethrin resistance found at the present time. We applied population genetics analyses to microsatellite and village data and search for associations between the genetic variability and the heterogeneous toxicological pattern previously found. We genotyped 10 microsatellite loci in 67 T. infestans from 6 villages with no, low, and high pyrethroid resistance. The most genetically diverse populations were those susceptible or with low values of resistance. In contrast, high-resistance populations had lower herozygosity and some monomorphic loci. A negative association was found between variability and resistant ratios. Global and pairwise FSTs indicated significant differentiation between populations. The only susceptible population was discriminated in all the performed studies. Low-resistance populations were also differentiated by a discriminant analysis of principal components (DAPC) and were composed mostly by the same two genetic clusters according to STRUCTURE Bayesian algorithm. Individuals from the high-resistance populations were overlapped in the DAPC and shared significant proportions of a genetic cluster. These observations suggest that the resistant populations might have a common origin, although more genetic markers and samples are required to test this hypothesis more rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material (data transparency)

Genepop and STRUCTURE files are available upon e-mail request to the corresponding author.

References

  • Abrahan LB, Gorla DE, Catala SS (2011) Dispersal of Triatoma infestans and other Triatominae species in the arid Chaco of Argentina: flying, walking or passive carriage? The importance of walking females. Mem Inst Oswaldo Cruz 106(2):232–239

    Article  PubMed  Google Scholar 

  • Alzogaray RA, Zerba EN (1993) Temperature effect on the insecticidal activity of pyrethroids on Triatoma infestans. Comp Biochem Physiol C Toxicol Pharmacol 104:485–488

    Article  CAS  Google Scholar 

  • Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14

    Article  CAS  Google Scholar 

  • Ascunce MS, Toups MA, Kassu G, Fane J, Scholl K, Reed DL (2013) Nuclear genetic diversity in human lice (Pediculus humanus) reveals continental differences and high inbreeding among worldwide populations. PLoS One 8:e57619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante Gomez M, Gonçalves Diotaiuti L, Gorla DE (2016) Distribution of pyrethroid resistant populations of Triatoma infestans in the Southern Cone of South America. PLoS Negl Trop Dis 10:e0004561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang X, Zhong D, Lo E, Fang Q, Bonizzoni M, Wang X, Lee M-C, Zhou G, Zhu G, Qin Q, Chen X, Cui L, Yan G (2016) Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis Parasit Vectors 9: 228

  • Carvajal G, Mougabure Cueto GA, Toloza AC (2012) Toxicity of non-pyrethroid insecticides against Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 107:675–679

    Article  CAS  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 4(3):621–631

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fronza G, Toloza AC, Picollo MI, Carbajo A, Rodríguez CS, Mougabure Cueto GA (2019) Modelling the association between deltamethrin resistance in Triatoma infestans populations of the Argentinian Gran Chaco region with environmental factors. Acta Trop 194:53–61

    Article  CAS  PubMed  Google Scholar 

  • Fronza G, Toloza AC, Picollo MI, Spillmann C, Mougabure Cueto GA (2016) Geographical variation of deltamethrin susceptibility of Triatoma infestans (Hemiptera: Reduviidae) in Argentina with emphasis on a resistant focus in the Gran Chaco. J Med Entomol 53:880–887

    Article  CAS  PubMed  Google Scholar 

  • Fronza G, Roca-Acevedo G, Mougabure-Cueto GA, Sierra I, Capriotti N, Toloza AC (2020) Insecticide resistance mechanisms in Triatoma infestans (Reduviidae: Triatominae): the putative role of enhanced detoxification and knockdown resistance (kdr) allele in a resistant hotspot from the Argentine Chaco. J Med Entomol 57(3):837–844

    Article  PubMed  Google Scholar 

  • Germano MD, Roca Acevedo G, Mougabure Cueto GA, Toloza AC, Vassena CV, Picollo MI (2010) New findings of insecticide resistance in Triatoma infestans (Heteroptera: Reduviidae) from the Gran Chaco. J Med Entomol 47:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) Available from http://www.unil.ch/izea/softwares/fstat.html

  • Gourbière S, Dorn P, Tripet F, Dumonteil E (2012) Genetics and evolution of triatomines: from phylogeny to vector control. Heredity 108(3):190–202

    Article  PubMed  Google Scholar 

  • Gurevitz JM, Ceballos LA, Kitron U, Gürtler RE (2006) Flight initiation of Triatoma infestans (Hemiptera: Reduviidae) under natural climatic conditions. J Med Entomol 43:143–150

    Article  PubMed  Google Scholar 

  • Gürtler RE (2009) Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches. Mem Inst Oswaldo Cruz 104:52–59

    Article  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchison D, Templeton A (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Lardeux F, Depickère S, Duchon S, Chavez T (2010) Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Tropical Med Int Health 15:1037–1048

    Google Scholar 

  • Lobbia PA, Rodríguez C, Mougabure-Cueto G (2019) Effect of reproductive state on active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) susceptible and resistant to deltamethrin. Acta Trop 196:7–14

    Article  CAS  PubMed  Google Scholar 

  • Marcet PL, Lehmann T, Groner G, Gürtler RE, Kitron U, Dotson EM (2006) Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma infestans (Heteroptera: Reduviidae). Infect Genet Evol 6:32–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcet PL, Mora MS, Cutrera AP, Jones L, Gürtler RE, Kitron U, Dotson EM (2008) Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina. Infect Genet Evol 8:835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougabure-Cueto G, Picollo MI (2015) Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149:70–85

    Article  CAS  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez de Rosas AR, Segura EL, García BA (2007) Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol 16:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Pérez de Rosas AR, Segura EL, Fichera L, García BA (2008) Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 133:247–260

    Article  PubMed  Google Scholar 

  • Piccinali RV, Gürtler RE (2015) Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco. Infect Genet Evol 34:143–152

    Article  PubMed  Google Scholar 

  • Piccinali RV, Marcet PL, Noireau F, Kitron U, Gürtler RE, Dotson EM (2009) Molecular population genetics and phylogeography of the Chagas disease vector Triatoma infestans in South America. J Med Entomol 46:796–809

    Article  CAS  PubMed  Google Scholar 

  • Piccinali RV, Gaunt MW, Gürtler RE (2018) A microsatellite-based analysis of house infestation with Triatoma infestans (Hemiptera: Reduviidae) after insecticide spraying in the Argentine Chaco. J Med Entomol 55(3):609–619

    Article  PubMed  Google Scholar 

  • Picollo MI, Vassena CV, Santo Orihuela P, Barrios S, Zaidemberg M, Zerba EN (2005) High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. J Med Entomol 42:637–642

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pizarro JC, Gilligan LM, Stevens L (2008) Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Negl. Trop. Dis. 2(3): e202

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Richer W, Kengne P, Cortez MR, Perrineau MM, Cohuet A, Fontenille D, Noireau F (2007) Active dispersal by wild Triatoma infestans in the Bolivian Andes. Tropical Med Int Health 12(6):759–764

    Article  Google Scholar 

  • Roca-Acevedo G, Picollo MI (2017) Identifying current and missing knowledge in the control of pyrethroid-resistant Triatoma infestans, vector of Chagas disease. Global J Health Sci 9:47–56

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Res 8(1):103–106

    Article  Google Scholar 

  • Schofield CJ, Lehane MJ, McEwen P, Catalá SS, Gorla DE (1992) Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6:51–56

    Article  CAS  PubMed  Google Scholar 

  • Schofield CJ (2000) Challenges of Chagas disease vector control in Central America. Global collaboration for development of pesticides for public health. World Health Organization, WHO/CDS/WHOPES/GCDPP/2000.1

  • Schweigmann N, Vallvé S, Muscio O, Ghillini N, Alberti A, Wisnivesky-Colli C (1988) Dispersal flight by Triatoma infestans in an arid area of Argentina. Med Vet Entomol 2:401–404

    Article  CAS  PubMed  Google Scholar 

  • Toloza AC, Germano MD, Mougabure Cueto GA, Vassena CV, Zerba EN, Picollo MI (2008) Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol 45:421–426

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Prokopec GM, Ceballos LA, Cecere MC, Gürtler RE (2002) Seasonal variations of microclimatic conditions in domestic and peridomestic habitats of Triatoma infestans in rural northwest Argentina. Acta Trop 84(3):229–238

  • Vazquez-Prokopec GM, Ceballos LA, Kitron U, Gürtler RE (2004) Active dispersal of natural populations of Triatoma infestans (Hemiptera: Reduviidae) in rural northwestern Argentina. J Med Entomol 41:614–621

    Article  PubMed  Google Scholar 

  • Waleckx E, Gourbiere S, Dumonteil E (2015) Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Mem Inst Oswaldo Cruz 110:324–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • (WHO) World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90:33–44

    Google Scholar 

Download references

Acknowledgments

We thank the personnel of the NCP of Argentine and the Chagas Program of the Chaco Province as well as Dr. V.A. Confalonieri for the use of Nanodrop to estimate DNA concentrations. We are grateful to two anonymous reviewers for their comments on a previous version of this article.

Funding

This investigation received financial support from Agencia Nacional de Promoción Científica y Técnológica (PICT 2014–1952, PICT 2015–1905), Fundación CAECE (Resol.443/18), and CONICET (PIP 0198 CO).

Author information

Authors and Affiliations

Authors

Contributions

Conceived the experiment: RVP, ACT, GF. Analyzed data: RVP, GF. Interpreted and discussed the results: RVP, ACT, FG, GAM-C. Wrote the article: RVP and ACT.

Corresponding author

Correspondence to Romina V. Piccinali.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

No human participants, human data, or human tissue were used in the present study. Insects were fed on pigeon blood once per week according to a protocol approved by the Institutional Animal Care and Use Committee of CIPEIN (IACUC/CICUAL 1531/13).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability (software application or custom code)

Not applicable.

Additional information

Handling Editor: Una Ryan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

Inference of best K value in the STRUCTURE runs of T. infestans from the Argentine Chaco with different degrees of insecticide resistance. a. Plot of the mean likelihood values L(K) and variance against K, the number of clusters. b. Plot of the Delta K method (Evanno et al. 2005). Delta K: statistic based on the rate of change in the log probability of data between successive K values (PDF 108 kb)

Online Resource 2

Population structure of T. infestans from the Argentine Chaco with different degrees of insecticide resistance inferred with STRUCTURE using the RECESSIVEALLELS option. a. K = 2. B. K = 4. Each bar represents an individual and each color the proportion of the genome assigned to each cluster (TIF 17611 kb)

High Resolution Image (PNG 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccinali, R.V., Fronza, G., Mougabure-Cueto, G.A. et al. Genetic structure of deltamethrin-resistant populations of Triatoma infestans (Hemiptera: Reduviidae) in the Gran Chaco. Parasitol Res 119, 3305–3313 (2020). https://doi.org/10.1007/s00436-020-06789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06789-y

Keywords

Navigation