Skip to main content

Advertisement

Log in

Environmentally Induced Epigenetic Plasticity in Development: Epigenetic Toxicity and Epigenetic Adaptation

  • Genetic Epidemiology (C Amos, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Epigenetic processes represent important mechanisms underlying developmental plasticity in response to environmental exposures. The current review discusses three classes of environmentally induced epigenetic changes reflecting two aspects of that plasticity, toxicity effects as well as adaptation in the process of development.

Recent Findings

Due to innate resilience, epigenetic changes caused by environmental exposures may not always lead to impairments but may allow the organisms to achieve positive developmental outcomes through appropriate adaptation and a buffering response. Thus, some epigenetic adaptive responses to an immediate stimulus or exposure early in life would be expected to have a survival advantage but these same responses may also result in adverse developmental outcomes as they persist into later life stages. Although accumulating literature has identified environmentally induced epigenetic changes and linked them to health outcomes, we currently face challenges in the interpretation of the functional impact of their epigenetic plasticity.

Summary

Current environmental epigenetic research suggests that epigenetic processes may serve as a mechanism for resilience, and that they can be considered in terms of their impact on toxicity as a negative outcome, but also on adaptation for improved survival or health. This review encourages epigenetic environmental studies to move deeper into the functional meaning of epigenetic plasticity in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Kuzawa CW, Thayer ZM. Timescales of human adaptation: the role of epigenetic processes. Epigenomics. 2011;3:221–34.

    Article  CAS  PubMed  Google Scholar 

  2. West-Eberhard MJ. Developmental Plasticity and Evolution [Internet]. 1st ed. Oxford University Press; 2003 [cited 2018 Jul 5]. Available from: http://www.oupcanada.com/catalog/9780195122350.html.

  3. Lerner RM, Hood KE. Plasticity in development: concepts and issues for intervention. J Appl Dev Psychol. 1986;7:139–52.

    Article  Google Scholar 

  4. McEwen BS, Gray JD, Nasca C. Recognizing resilience: learning from the effects of stress on the brain. Neurobiol Stress. 2015;1:1–11.

    Article  PubMed  Google Scholar 

  5. Masten AS, Gewirtz AH. Resilience in development: the importance of early childhood. 2006 [cited 2018 Jul 5]. Available from: http://conservancy.umn.edu/handle/11299/53904.

  6. Ellison PT, Jasienska G. Constraint, pathology, and adaptation: how can we tell them apart? Am J Hum Biol. 2007;19:622–30.

    Article  PubMed  Google Scholar 

  7. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293:1068–70.

    Article  CAS  PubMed  Google Scholar 

  8. Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. 2018;17:e12423.

    Article  CAS  PubMed  Google Scholar 

  9. Schuebel K, Gitik M, Domschke K, Goldman D. Making sense of epigenetics. Int J Neuropsychopharmacol [Internet]. 2016 [cited 2018 Jul 5];19. Available from: https://academic.oup.com/ijnp/article/19/11/pyw058/2629242.

  10. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15:R37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tompkins JD, Hall C, Chen VC -y, Li AX, Wu X, Hsu D, et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci. 2012;109:12544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee J, Lee DR, Lee DH, Paek YJ, Lee WC. Influence of maternal environmental tobacco smoke exposure assessed by hair nicotine levels on birth weight. Asian Pac J Cancer Prev. 2015;16:3029–34.

    Article  PubMed  Google Scholar 

  13. Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation: DNA methylation dynamics in plants and mammals. Cell Biochem Funct. 2016;34:289–98.

    Article  CAS  PubMed  Google Scholar 

  14. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor KM, Wheeler R, Singh N, Vosloo D, Ray DW, Sommer P. The tobacco carcinogen NNK drives accumulation of DNMT1 at the GR promoter thereby reducing GR expression in untransformed lung fibroblasts. Sci Rep. 2018;8:4903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nagre NN, Subbanna S, Shivakumar M, Psychoyos D, Basavarajappa BS. CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation. J Neurochem. 2015;132:429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics [Internet]. 2017 [cited 2018 Aug 10];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297118/.

  18. Klungland A, Robertson AB. Oxidized C5-methyl cytosine bases in DNA: 5-hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med. 2017;107:62–8.

    Article  CAS  PubMed  Google Scholar 

  19. Goodrich JM, Dolinoy DC, Sánchez BN, Zhang Z, Meeker JD, Mercado-Garcia A, et al. Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence. Environ Epigenet [Internet]. 2016 [cited 2018 Jun 18];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804533/.

  20. Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol [Internet]. 2018 [cited 2018 Jul 10];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962689/.

  21. Soubry A. POHaD: why we should study future fathers. Environ Epigenet [Internet]. 2018 [cited 2018 Jul 10];4. Available from: https://academic.oup.com/eep/article/4/2/dvy007/4987171

  22. Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, et al. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int. 2018;114:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armstrong DA, Green BB, Blair BA, Guerin DJ, Litzky JF, Chavan NR, et al. Maternal smoking during pregnancy is associated with mitochondrial DNA methylation. Environ Epigenet [Internet]. 2016 [cited 2018 Jun 11];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624552/.

  24. Appleton AA, Jackson BP, Karagas M, Marsit CJ. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics. 2017;12:607–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ostlund BD, Conradt E, Crowell SE, Tyrka AR, Marsit CJ, Lester BM. Prenatal stress, fearfulness, and the epigenome: exploratory analysis of sex differences in DNA methylation of the glucocorticoid receptor gene. Front Behav Neurosci. 2016;10:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Küpers LK, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2017;10:27–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Maccani JZJ, Koestler DC, Houseman EA, Armstrong DA, Marsit CJ, Kelsey KT. DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol. 2015;57:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Binder AM, LaRocca J, Lesseur C, Marsit CJ, Michels KB. Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex. Clin Epigenetics [Internet]. 2015 [cited 2018 Jun 11];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524439/.

  29. Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, et al. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the New Hampshire birth cohort study (USA). Environ Health Perspect. 2016;124:1253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaushal A, Zhang H, Karmaus WJJ, Everson TM, Marsit CJ, Karagas MR, et al. Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. Environ Health. 2017;16:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Everson TM, Punshon T, Jackson BP, Hao K, Lambertini L, Chen J, et al. Cadmium-associated differential methylation throughout the placental genome: epigenome-wide association study of two U.S. birth cohorts. Environ Health Perspect [Internet]. 2018 [cited 2018 Feb 9];126. Available from: http://ehp.niehs.nih.gov/EHP2192.

  32. Green BB, Marsit CJ. Select prenatal environmental exposures and subsequent alterations of gene-specific and repetitive element DNA methylation in fetal tissues. Curr Environ Health Rep. 2015;2:126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96 The largest epigenome-wide meta-analysis study across 13 cohorts detected the association between prenatal smoking exposure and DNA methylation modification in cord blood. This study identified several robust findings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bondesson M, Hao R, Lin C-Y, Williams C, Gustafsson J-Å. Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta. 1849;2015:142–51.

    Google Scholar 

  35. Hishida M, Nomoto S, Inokawa Y, Hayashi M, Kanda M, Okamura Y, et al. Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular carcinoma detected by triple-combination array analysis. Int J Oncol. 2013;43:88–94.

    Article  CAS  PubMed  Google Scholar 

  36. •• White AJ, Chen J, Teitelbaum SL, McCullough LE, Xu X, Hee Cho Y, et al. Sources of polycyclic aromatic hydrocarbons are associated with gene-specific promoter methylation in women with breast cancer. Environ Res. 2016;145:93–100 This is the first human study to report the epigenetic effects of active smoking as well as passive smoking in breast cancer tissues. This study documented that the smoking-induced hypomethylation of ESR1 is associated with breast cancer.

    Article  CAS  PubMed  Google Scholar 

  37. Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol [Internet]. 2018 [cited 2018 Jun 26]; Available from: http://www.sciencedirect.com/science/article/pii/S0960076018301031;182:106–18.

    Article  CAS  Google Scholar 

  38. Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, et al. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology. 2014;146:562–72.

    Article  CAS  PubMed  Google Scholar 

  39. Jiménez-Garduño AM, Mendoza-Rodríguez MG, Urrutia-Cabrera D, Domínguez-Robles MC, Pérez-Yépez EA, Ayala-Sumuano JT, et al. IL-1β induced methylation of the estrogen receptor ERα gene correlates with EMT and chemoresistance in breast cancer cells. Biochem Biophys Res Commun. 2017;490:780–5.

    Article  CAS  PubMed  Google Scholar 

  40. Kochmanski J, Marchlewicz EH, Savidge M, Montrose L, Faulk C, Dolinoy DC. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reprod Toxicol. 2017;68:154–63.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson ME, Sengoku T. Developmental regulation of neuronal genes by DNA methylation: environmental influences. Int J Dev Neurosci. 2013;31:448–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaudet MM, Campan M, Figueroa JD, Yang XR, Lissowska J, Peplonska B, et al. DNA Hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations. Cancer Epidemiol Biomark Prev. 2009;18:3036–43.

    Article  CAS  Google Scholar 

  43. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer | Clinical Epigenetics | Full Text [Internet]. [cited 2018 Jun 27]. Available from: https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-015-0165-2.

  44. Dai B, Geng L, Yu Y, Sui C, Xie F, Shen W, et al. Methylation patterns of estrogen receptor α promoter correlate with estrogen receptor α expression and clinicopathological factors in hepatocellular carcinoma. Exp Biol Med (Maywood). 2014;239:883–90.

    Article  CAS  Google Scholar 

  45. OZDEMIR F, ALTINISIK J, KARATEKE A, COKSUER H, BUYRU N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med. 2012;4:1092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chu T, Bunce K, Shaw P, Shridhar V, Althouse A, Hubel C, et al. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta. Oudejans C, editor. PLoS One. 2014;e107318:9.

    Google Scholar 

  47. •• Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int. 2018;118:334–47 This is one of the largest study on placental DNA methylation and nitrogen dioxide, particulate matter, temperature and humidity during pregnancy. This study identified hypermethylation of P2RX4 in placenta induced by prenatal nitrogen dioxide.

    Article  CAS  PubMed  Google Scholar 

  48. Ideta-Otsuka M, Igarashi K, Narita M, Hirabayashi Y. Epigenetic toxicity of environmental chemicals upon exposure during development—bisphenol A and valproic acid may have epigenetic effects. Food Chem Toxicol. 2017;109:812–6.

    Article  CAS  PubMed  Google Scholar 

  49. •• Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead induces genotoxicity via oxidative stress and promoter methylation of DNA repair genes in human Lymphoblastoid TK6 cells. Med Sci Monit. 2018;24:4295–304 This study provides the first evidence for human cells that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes, which is a robust evidence for the environmentally induced epigenetic toxicity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Paul S, Banerjee N, Chatterjee A, Sau TJ, Das JK, Mishra PK, et al. Arsenic-induced promoter hypomethylation and over-expression of ERCC2 reduces DNA repair capacity in humans by non-disjunction of the ERCC2–Cdk7 complex. Metallomics. 2014;6:864–73.

    Article  CAS  PubMed  Google Scholar 

  51. Jiménez-Garza O, Guo L, Byun H-M, Carrieri M, Bartolucci GB, Barrón-Vivanco BS, et al. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol Appl Pharmacol. 2018;339:65–72.

    Article  PubMed  CAS  Google Scholar 

  52. Marsit CJ. Placental epigenetics in children’s environmental health. Semin Reprod Med. 2016;34:36–41.

    CAS  PubMed  Google Scholar 

  53. •• Janssen BG, Gyselaers W, Byun H-M, Roels HA, Cuypers A, Baccarelli AA, et al. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight. J Transl Med [Internet]. 2017 [cited 2018 Jun 11];15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209876/. This is the first study to link the smoking-induced placental DNA methylation of CYP1A1 to the placental mitochondrial function as demonstrated by decreased mitochondrial DNA content.

  54. Xu P, Wu Z, Yang W, Wang L. Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology. 2017;390:109–16.

    Article  CAS  PubMed  Google Scholar 

  55. Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol. 2016;46:676–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee AG, Le Grand B, Hsu H-HL, Chiu Y-HM, Brennan KJ, Bose S, et al. Prenatal fine particulate exposure associated with reduced childhood lung function and nasal epithelia GSTP1 hypermethylation: sex-specific effects. Respir Res [Internet]. 2018 [cited 2018 Jun 11];19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923186/.

  57. •• Cardenas A, Rifas-Shiman SL, Agha G, Hivert M-F, Litonjua AA, DeMeo DL, et al. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci Rep [Internet]. 2017 [cited 2018 Jun 11];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428306/. This study measured the DNA methylation changes at two time points (at birth and childhood), and evaluated the epigenetic effect of prenatal mercury exposure on DNA methylation at each time point. This study linked the persistent DNA methylation change to the cognition performance.

  58. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84.

    Article  CAS  PubMed  Google Scholar 

  59. Levine ME, Lu AT, Quach A, Chen B, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018; 10(4):573–91.

  60. Nwanaji-Enwerem JC, Dai L, Colicino E, Oulhote Y, Di Q, Kloog I, et al. Associations between long-term exposure to PM2.5 component species and blood DNA methylation age in the elderly: the VA normative aging study. Environ Int. 2017;102:57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nwanaji-Enwerem JC, Colicino E, Trevisi L, Kloog I, Just AC, Shen J, et al. Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environ Epigenet [Internet]. 2016 [cited 2018 Jun 20];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957520/.

  62. Nwanaji-Enwerem JC, Colicino E, Dai L, Di Q, Just AC, Hou L, et al. miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM 2.5 exposure in elderly men. Epigenomics. 2017;9:1529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shan M, Yang X, Ezzati M, Chaturvedi N, Coady E, Hughes A, et al. A feasibility study of the association of exposure to biomass smoke with vascular function, inflammation, and cellular aging. Environ Res. 2014;135:165–72.

    Article  CAS  PubMed  Google Scholar 

  64. Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172:219–27.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wilker EH, Preis SR, Beiser AS, Wolf PA, Au R, Kloog I, et al. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke. 2015;46:1161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scheers H, Jacobs L, Casas L, Nemery B, Nawrot TS. Long-term exposure to particulate matter air pollution is a risk factor for stroke: meta-analytical evidence. Stroke. 2015;46:3058–66.

    Article  CAS  PubMed  Google Scholar 

  67. Brown DM, Petersen M, Costello S, Noth EM, Hammond K, Cullen M, et al. Occupational exposure to PM2.5 and incidence of ischemic heart disease. Epidemiology. 2015;26:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gao X, Zhang Y, Breitling LP, Brenner H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget. 2016;7:46878–89.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A. 2014;111:15538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hay WW. Placental-fetal glucose exchange and fetal glucose metabolism. Trans Am Clin Climatol Assoc. 2006;117:321–40.

    PubMed  PubMed Central  Google Scholar 

  71. Hashimoto K, Ogawa Y. Epigenetic switching and neonatal nutritional environment. Developmental origins of health and disease (DOHaD) [Internet]. Springer, Singapore; 2018 [cited 2018 Jul 9]. p. 19–25. Available from: http://link.springer.com/chapter/10.1007/978-981-10-5526-3_3.

  72. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475–90.

    Article  PubMed  Google Scholar 

  73. •• Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun [Internet]. 2018 [cited 2018 Jul 12];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809372/. This is the first study in vivo demonstrates that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity.

  74. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114:567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ho S-M. Environmental epigenetic of asthma—an update. J Allergy Clin Immunol. 2010;126:453–65.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Munthe-Kaas MC, Bertelsen RJ, Torjussen TM, Hjorthaug HS, Undlien DE, Lyle R, et al. Pet keeping and tobacco exposure influence CD14 methylation in childhood. Pediatr Allergy Immunol. 2012;23:746–53.

    Article  Google Scholar 

  77. Lauener RP, Birchler T, Adamski J, Braun-Fahrländer C, Bufe A, Herz U, et al. Expression of CD14 and toll-like receptor 2 in farmers’ and nonfarmers’ children. Lancet. 2002;360:465–6.

    Article  CAS  PubMed  Google Scholar 

  78. Raby A-C, Labéta MO. Therapeutic boosting of the immune response: turning to CD14 for help. Curr Pharm Biotechnol. 2016;17:414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci [Internet]. 2015 [cited 2018 Jul 12];282. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707740/.

  80. Timm S, Frydenberg M, Janson C, Campbell B, Forsberg B, Gislason T, et al. The urban-rural gradient in asthma: a population-based study in northern Europe. Int J Environ Res Public Health [Internet]. 2016 [cited 2018 Jul 11];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730484/.

  81. von Mutius E. The microbial environment and its influence on asthma prevention in early life. J Allergy Clin Immunol. 2016;137:680–9.

    Article  Google Scholar 

  82. Krzych-Fałta E, Furmańczyk K, Piekarska B, Raciborski F, Tomaszewska A, Walkiewicz A, et al. Extent of protective or allergy-inducing effects in cats and dogs. Ann Agric Environ Med. 2018;25:268–73.

    Article  PubMed  Google Scholar 

  83. Martinez FD. CD14, endotoxin, and asthma risk. Proc Am Thorac Soc. 2007;4:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stephens MAC, Wand G. Stress and the HPA axis. Alcohol Res. 2012;34:468–83.

    PubMed  PubMed Central  Google Scholar 

  85. Nagarajan S, Seddighzadeh B, Baccarelli A, Wise LA, Williams M, Shields AE. Adverse maternal exposures, methylation of glucocorticoid-related genes and perinatal outcomes: a systematic review. Epigenomics. 2016;8:925–44.

    Article  CAS  PubMed  Google Scholar 

  86. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3:97–106.

    Article  PubMed  Google Scholar 

  87. Fries GR, Gassen NC, Rein T. The FKBP51 glucocorticoid receptor co-chaperone: regulation, function, and implications in health and disease. Int J Mol Sci. 2017;18:2614.

    Article  CAS  PubMed Central  Google Scholar 

  88. Tyrka AR, Ridout KK, Parade SH, Paquette A, Marsit CJ, Seifer R. Childhood maltreatment and methylation of FKBP5. Dev Psychopathol. 2015;27:1637–45.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Parade SH, Parent J, Rabemananjara K, Seifer R, Marsit CJ, Yang B-Z, et al. Change in FK506 binding protein 5 (FKBP5) methylation over time among preschoolers with adversity. Dev Psychopathol. 2017;29:1627–34.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    Article  CAS  PubMed  Google Scholar 

  91. Berger J, Heinrichs M, von Dawans B, Way BM, Chen FS. Cortisol modulates men’s affiliative responses to acute social stress. Psychoneuroendocrinology. 2016;63:1–9.

    Article  CAS  PubMed  Google Scholar 

  92. Dinneen S, Alzaid A, Miles J, Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest. 1993;92:2283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Simerman AA, Hill DL, Grogan TR, Elashoff D, Clarke NJ, Goldstein EH, et al. Intrafollicular cortisol levels inversely correlate with cumulus cell (CC) lipid content as a possible energy source during oocyte meiotic resumption in women undergoing ovarian stimulation for in vitro fertilization (IVF). Fertil Steril. 2015;103:249–57.

    Article  CAS  PubMed  Google Scholar 

  94. Brillon DJ, Zheng B, Campbell RG, Matthews DE. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol Endocrinol Metab. 1995;268:E501–13.

    Article  CAS  Google Scholar 

  95. Kamba A, Daimon M, Murakami H, Otaka H, Matsuki K, Sato E, et al. Association between higher serum cortisol levels and decreased insulin secretion in a general population. PLoS One. 2016;11:e0166077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kudielka BM, Bellingrath S, Hellhammer DH. Cortisol in burnout and vital exhaustion: an overview. G Ital Med Lav Ergon. 2006;28:34–42.

    CAS  PubMed  Google Scholar 

  97. Miller GE, Chen E, Zhou ES. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol Bull. 2007;133:25–45.

    Article  PubMed  Google Scholar 

  98. Stonawski V, Frey S, Golub Y, Rohleder N, Kriebel J, Goecke TW, et al. Associations of prenatal depressive symptoms with DNA methylation of HPA axis-related genes and diurnal cortisol profiles in primary school-aged children. Dev Psychopathol. 2018; Apr 2: 1–13. (epub ahead of print). https://doi.org/10.1017/S0954579418000056

  99. van der Knaap LJ, Oldehinkel AJ, Verhulst FC, van Oort FVA, Riese H. Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents. The TRAILS study. Psychoneuroendocrinology. 2015;58:46–50.

    Article  PubMed  CAS  Google Scholar 

  100. Farrell C, Doolin K, O’ Leary N, Jairaj C, Roddy D, Tozzi L, et al. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic–pituitary–adrenal axis activity and to early life emotional abuse. Psychiatry Res. 2018;265:341–8.

    Article  CAS  PubMed  Google Scholar 

  101. Peng H, Zhu Y, Strachan E, Fowler E, Bacus T, Roy-Byrne P, et al. Childhood Trauma, DNA Methylation of Stress-related Genes, and Depression: Findings from Two Monozygotic Twin Studies. Psychosom Med. 2018;80(7):599–608.

  102. Hong S, Zheng G, Wiley JW. Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology. 2015;148:148–157.e7.

    Article  CAS  PubMed  Google Scholar 

  103. Niknazar S, Nahavandi A, Peyvandi AA, Peyvandi H, Roozbahany NA, Abbaszadeh H-A. Hippocampal NR3C1 DNA methylation can mediate part of preconception paternal stress effects in rat offspring. Behav Brain Res. 2017;324:71–6.

    Article  CAS  PubMed  Google Scholar 

  104. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.

    Article  CAS  PubMed  Google Scholar 

  105. Parent J, Parade SH, Laumann LE, Ridout KK, Yang B-Z, Marsit CJ, et al. Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early development: the role of child maltreatment. Dev Psychopathol. 2017;29:1635–48.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Seltzer LJ, Ziegler T, Connolly MJ, Prososki AR, Pollak SD. Stress-induced elevation of oxytocin in maltreated children: evolution, neurodevelopment, and social behavior. Child Dev. 2014;85:501–12.

    Article  PubMed  Google Scholar 

  107. Yang IV, Richards A, Davidson EJ, Stevens AD, Kolakowski CA, Martin RJ, et al. The nasal methylome: a key to understanding allergic asthma. Am J Respir Crit Care Med. 2017;195:829–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lester BM, Marsit CJ. Epigenetic mechanisms in the placenta related to infant neurodevelopment. Epigenomics [Internet]. 2018 [cited 2018 Feb 9]; Available from: https://www.futuremedicine.com/doi/10.2217/epi-2016-0171.

  109. Gliga AR, Engström K, Kippler M, Skröder H, Ahmed S, Vahter M, et al. Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Arch Toxicol. 2018; 92(8):2487–500.

  110. Tobaldini E, Bollati V, Prado M, Fiorelli EM, Pecis M, Bissolotti G, et al. Acute particulate matter affects cardiovascular autonomic modulation and IFN-γ methylation in healthy volunteers. Environ Res. 2018;161:97–103.

    Article  CAS  PubMed  Google Scholar 

  111. Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron. 2009;64:28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Oken E, Baccarelli AA, Gold DR, Kleinman KP, Litonjua AA, De Meo D, et al. Cohort profile: project viva. Int J Epidemiol. 2015;44:37–48.

    Article  PubMed  Google Scholar 

  113. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.

    Article  PubMed  Google Scholar 

  114. Staley JR, Suderman M, Simpkin AJ, Gaunt TR, Heron J, Relton CL, et al. Longitudinal analysis strategies for modelling epigenetic trajectories. Int J Epidemiol. 2018;47:516–25.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Caramaschi D, Sharp GC, Nohr EA, Berryman K, Lewis SJ, Davey Smith G, et al. Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study. Hum Mol Genet. 2017;26:3001–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Küpers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van Gemert S, Scholtens S, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol. 2015;44:1224–37.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Leung Y-K, Ouyang B, Niu L, Xie C, Ying J, Medvedovic M, et al. Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics. 2018; 13(3):290–300.

  118. •• Zhang B, Hong X, Ji H, Tang W, Kimmel M, Ji Y, et al. Maternal smoking during pregnancy and cord blood DNA methylation: new insight on sex differences and effect modification by maternal folate levels. Epigenetics. 2018;13:505–18. This is a large study detected the modification effect of mother folate level on the association between prenatal smoking and epigenome-wide DNA methylation.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH-NIEHS R01ES022223, P01 ES022832, R21 ES028226, R24 ES028507) and by the U.S. Environmental Protection Agency (EPA) (U.S. EPA grant RD83544201). Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the U.S. EPA. Further, the U.S. EPA does not endorse the purchase of any commercial products or services mentioned in the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen J. Marsit.

Ethics declarations

Conflict of Interest

Fu-Ying Tian reports grants from the National Institutes of Health, grants from U.S. Environmental Protection Agency, during the conduct of the study. Carmen Marsit reports grants from the National Institutes of Health, grants from US. Environmental Protection Agency, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetic Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, FY., Marsit, C.J. Environmentally Induced Epigenetic Plasticity in Development: Epigenetic Toxicity and Epigenetic Adaptation. Curr Epidemiol Rep 5, 450–460 (2018). https://doi.org/10.1007/s40471-018-0175-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-018-0175-7

Keywords

Navigation