Skip to main content

Epigenetic Mechanisms of Adverse Neurodevelopment in Response to Lead Exposure and Prenatal Stress and the Combination: The Road Ahead

  • Chapter
  • First Online:
Epigenetics, the Environment, and Children’s Health Across Lifespans

Abstract

Risk factors for adverse child neurodevelopment such as elevated lead exposure and prenatal stress are often co-occurring or sequentially occurring in the human environment. They also have overlapping biological targets that likely underlie the similarity of their adverse behavioral consequences. This overlap also provides a biological infrastructure for their potential interactions and enhanced and/or cumulative toxicity. Effects of both developmental lead exposure and prenatal stress can be lifelong and are consistent with early fetal reprogramming via epigenetic changes, and multigenerational and transgenerational consequences of each have been suggested. While an accumulating body of evidence now documents the potential for epigenetic reprogramming in response to maternal stressors both in human and animal studies, information on the potential for similar mechanisms in response to developmental lead exposure is still sparse. Defining the extent to which epigenetic reprogramming underlies the protracted neurodevelopmental consequences of these risk factors will need to take into account the potential for plasticity of effects, differences in outcome by sex and by brain region and by timing of exposure to the risk factor(s), and, importantly, the modifying influence of behavioral experiences on epigenetic profiles. Furthermore, critical to ultimately understanding the consequences of these risk factors for human populations will be an understanding of epigenetic outcomes in response to combined exposures to such risk factors. The determination of how/what behaviors modify epigenetic profiles in the brain offers the opportunity to devise therapeutic behavioral interventions to facilitate resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, N. B., & Armstead, C. A. (1995). Toward understanding the association of socioeconomic status and health: A new challenge for the biopsychosocial approach. Psychosomatic Medicine, 57, 213–225.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D. W., Schneider, J. S., Sobolewski, M., & Cory-Slechta, D. (2015). Sex-dependent effects of lead and prenatal stress on adult glucocorticoid receptor expression and its epigenetic control. Toxicological Sciences, 144(1), 207.

    Google Scholar 

  • Auger, A. P., & Auger, C. J. (2011). Epigenetic turn ons and turn offs: Chromatin reorganization and brain differentiation. Endocrinology, 152(2), 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Babenko, O., Kovalchuk, I., & Metz, G. A. (2015). Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neuroscience & Biobehavioral Reviews, 48, 70–91.

    Article  Google Scholar 

  • Bakulski, K. M., Rozek, L. S., Dolinoy, D. C., Paulson, H. L., & Hu, H. (2012). Alzheimer’s disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigenetics. Current Alzheimer Research, 9(5), 563–573.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 16(6), 332–344.

    Article  CAS  PubMed  Google Scholar 

  • Baranowska-Bosiacka, I., Struzynska, L., Gutowska, I., Machalinska, A., Kolasa, A., Klos, P., et al. (2013). Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus. Toxicology, 303, 187–200.

    Article  CAS  PubMed  Google Scholar 

  • Barros, V. G., Berger, M. A., Martijena, I. D., Sarchi, M. I., Perez, A. A., Molina, V. A., et al. (2004). Early adoption modifies the effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Journal of Neuroscience Research, 76(4), 488–496.

    Article  CAS  PubMed  Google Scholar 

  • Basha, M. R., Wei, W., Bakheet, S. A., Benitez, N., Siddiqi, H. K., Ge, Y. W., et al. (2005). The fetal basis of amyloidogenesis: Exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. Journal of Neuroscience, 25(4), 823–829.

    Article  CAS  PubMed  Google Scholar 

  • Belnoue, L., Grosjean, N., Ladeveze, E., Abrous, D. N., & Koehl, M. (2013). Prenatal stress inhibits hippocampal neurogenesis but spares olfactory bulb neurogenesis. PLoS One, 8(8), e72972.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berger, M. A., Barros, V. G., Sarchi, M. I., Tarazi, F. I., & Antonelli, M. C. (2002). Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochemical Research, 27(11), 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  • Bihaqi, S. W., Huang, H., Wu, J., & Zawia, N. H. (2011). Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: Implications for Alzheimer’s disease. Journal of Alzheimer’s Disease, 27(4), 819–833.

    CAS  PubMed  Google Scholar 

  • Bock, J., Wainstock, T., Braun, K., & Segal, M. (2015). Stress in utero: Prenatal programming of brain plasticity and cognition. Biol Psychiatry, 78(5), 315–326.

    Article  PubMed  Google Scholar 

  • Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371–399.

    Article  PubMed  Google Scholar 

  • Braun, J. M., Wright, R. J., Just, A. C., Power, M. C., Tamayo, Y. O. M., Schnaas, L., et al. (2014). Relationships between lead biomarkers and diurnal salivary cortisol indices in pregnant women from Mexico City: A cross-sectional study. Environmental Health, 13(1), 50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brunton, P. J. (2015). Programming the brain and behaviour by early-life stress: A focus on neuroactive steroids. Journal of Neuroendocrinology, 27(6), 468–480.

    Article  CAS  PubMed  Google Scholar 

  • Byers, R., & Lord, E. (1943). Late effects of lead poisoning on mental development. American Journal of Diseases of Children, 66, 471–494.

    CAS  Google Scholar 

  • Canfield, R. L., Henderson, C. R., Jr., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. The New England Journal of Medicine, 348(16), 1517–1526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cecil, K. M., Brubaker, C. J., Adler, C. M., Dietrich, K. N., Altaye, M., Egelhoff, J. C., et al. (2008). Decreased brain volume in adults with childhood lead exposure. PLoS Medicine, 5(5), e112.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2013). Blood lead levels in children aged 1-5 years - United States, 1999-2010. Morbidity and Mortality Weekly Report, 62, 245–248.

    Google Scholar 

  • Chisolm, J. J., Jr., & Harrison, H. E. (1957). The treatment of acute lead encephalopathy in children. Pediatrics, 19(1), 2–20.

    PubMed  Google Scholar 

  • Cory-Slechta, D. A. (1995). Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions. Annual Review of Pharmacology and Toxicology, 35, 391–415.

    Article  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A. (1997). Relationships between Pb-induced changes in neurotransmitter system function and behavioral toxicity. Neurotoxicology, 18, 673–688.

    CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., Garcia-Osuna, M., & Greenamyre, J. T. (1997). Lead-induced changes in NMDA receptor complex binding: Correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration. Behavioural Brain Research, 85, 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., Merchant-Borna, K., Allen, J., Liu, S., Weston, D., & Conrad, K. (2013). Variations in the nature of behavioral experience can differentially alter the consequences of developmental exposures to lead, prenatal stress and the combination. Toxicological Sciences, 131, 194–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., O’Mara, D. J., & Brockel, B. J. (1998). Nucleus accumbens dopaminergic mediation of fixed interval schedule-controlled behavior and its modulation by low-level lead exposure. Journal of Pharmacology and Experimental Therapeutics, 286(3), 794–805.

    CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., O’Mara, D. J., & Brockel, B. J. (1999). Learning versus performance impairments following regional administration of MK-801 into nucleus accumbens and dorsomedial striatum. Behavioural Brain Research, 102, 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., Stern, S., Weston, D., Allen, J. L., & Liu, S. (2010). Enhanced learning deficits in female rats following lifetime Pb exposure combined with prenatal stress. Toxicological Sciences, 117(2), 427–438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., Virgolini, M. B., Liu, S., & Weston, D. (2012). Enhanced stimulus sequence-dependent repeated learning in male offspring after prenatal stress alone or in conjunction with lead exposure. Neurotoxicology, 33(5), 1188–1202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., Virgolini, M. B., Rossi-George, A., Thiruchelvam, M., Lisek, R., & Weston, D. (2008). Lifetime consequences of combined maternal lead and stress. Basic and Clinical Pharmacology and Toxicology, 102(2), 218–227.

    Article  CAS  PubMed  Google Scholar 

  • Cory-Slechta, D. A., Weiss, B., & Cox, C. (1989). Tissue distribution of Pb in adult vs. old rats: A pilot study. Toxicology, 59(2), 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Cottrell, E. C., & Seckl, J. R. (2009). Prenatal stress, glucocorticoids and the programming of adult disease. Frontiers in Behavioral Neuroscience, 3, 19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davis, E. P., & Sandman, C. A. (2010). The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development, 81(1), 131–148.

    Article  PubMed Central  PubMed  Google Scholar 

  • Deroche, V., Marinelli, M., Maccari, S., Le Moal, M., Simon, H., & Piazza, P. V. (1995). Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. Journal of Neuroscience, 15(11), 7181–7188.

    CAS  PubMed  Google Scholar 

  • DiCorcia, J. A., & Tronick, E. (2011). Quotidian resilience: Exploring mechanisms that drive resilience from a perspective of everyday stress and coping. Neuroscience & Biobehavioral Reviews, 35(7), 1593–1602.

    Article  Google Scholar 

  • Dietrich, K. N., Ris, M. D., Succop, P. A., Berger, O. G., & Bornschein, R. L. (2001). Early exposure to lead and juvenile delinquency. Neurotoxicology and Teratology, 23(6), 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Dohrenwend, B. P. (1973). Social status and stressful life events. Journal of Personal and Social Psychology, 28, 225–235.

    Article  CAS  Google Scholar 

  • Dolinoy, D. C., Das, R., Weidman, J. R., & Jirtle, R. L. (2007). Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatric Research, 61(5 Pt 2), 30R–37R.

    Article  PubMed  Google Scholar 

  • Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., et al. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genetics, 38(12), 1378–1385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellenbogen, M. A., Hodgins, S., Linnen, A. M., & Ostiguy, C. S. (2011). Elevated daytime cortisol levels: A biomarker of subsequent major affective disorder? Journal of Affective Disorders, 132(1-2), 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Faulk, C., Barks, A., Liu, K., Goodrich, J. M., & Dolinoy, D. C. (2013). Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics, 5(5), 487–500.

    Article  CAS  PubMed  Google Scholar 

  • Faulk, C., Liu, K., Barks, A., Goodrich, J. M., & Dolinoy, D. C. (2014). Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics, 9(7), 934–941.

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng, J., Fouse, S., & Fan, G. (2007). Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research, 61(5 Pt 2), 58R–63R.

    Article  CAS  PubMed  Google Scholar 

  • Focking, M., Opstelten, R., Prickaerts, J., Steinbusch, H. W., Dunn, M. J., van den Hove, D. L., et al. (2014). Proteomic investigation of the hippocampus in prenatally stressed mice implicates changes in membrane trafficking, cytoskeletal, and metabolic function. Developmental Neurosciences, 36(5), 432–442.

    Article  CAS  Google Scholar 

  • Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gee, G. C., & Payne-Sturges, D. C. (2004). Environmental health disparities: A framework integrating psychosocial and environmental concepts. Environmental Health Perspectives, 112(17), 1645–1653.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilbert, M. E., Mack, C. M., & Lasley, S. M. (1999). Chronic developmental lead exposure and hippocampal long-term potentiation: Biphasic dose-response relationship. Neurotoxicology, 20(1), 71–82.

    CAS  PubMed  Google Scholar 

  • Glover, V., O’Connor, T. G., & O’Donnell, K. (2010). Prenatal stress and the programming of the HPA axis. Neuroscience & Biobehavioral Reviews, 35(1), 17–22.

    Article  CAS  Google Scholar 

  • Guilarte, R. T., Miceli, R. C., & Jett, D. A. (1994). Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology, 15(3), 459–466.

    CAS  PubMed  Google Scholar 

  • Gulson, B. L., Jameson, C. W., Mahaffey, K. R., Mizon, K. J., Korsch, M. J., & Vimpani, G. (1997). Pregnancy increases mobilization of lead from maternal skeleton. Journal of Laboratory and Clinical Medicine, 130, 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, C. W., Bloom, M. S., Robinson, W. P., Kim, D., Parsons, P. J., vom Saal, F. S., et al. (2012). DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Human Reproduction, 27(5), 1401–1410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez-Avila, M., Peterson, K. E., Gonzalez-Cossio, T., Sanin, L. H., Aro, A., Schnaas, L., et al. (2002). Effect of maternal bone lead on length and head circumference of newborns and 1-month-old infants. Archives of Environmental Health, 57(5), 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Hu, F., Xu, L., Liu, Z. H., Ge, M. M., Ruan, D. Y., & Wang, H. L. (2014). Developmental lead exposure alters synaptogenesis through inhibiting canonical Wnt pathway in vivo and in vitro. PLoS One, 9(7), e101894.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jelliffe-Pawlowski, L. L., Miles, S. Q., Courtney, J. G., Materna, B., & Charlton, V. (2006). Effect of magnitude and timing of maternal pregnancy blood lead (Pb) levels on birth outcomes. Journal of Perinatology, 26(3), 154–162.

    Article  CAS  PubMed  Google Scholar 

  • Jirtle, R. L., & Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 8(4), 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Keenan, K., Gunthorpe, D., & Grace, D. (2007). Parsing the relations between SES and stress reactivity: Examining individual differences in neonatal stress response. Infant Behavior & Development, 30(1), 134–145.

    Article  Google Scholar 

  • Kolodkin, M. H., & Auger, A. P. (2011). Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development. Journal of Neuroendocrinology, 23(7), 577–583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flugge, G., Korte, S. M., et al. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews, 35(5), 1291–1301.

    Article  CAS  Google Scholar 

  • Kortenkamp, A., Faust, M., Scholze, M., & Backhaus, T. (2007). Low-level exposure to multiple chemicals: Reason for human health concerns? Environmental Health Perspectives, 115(Suppl 1), 106–114.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kovatsi, L., Georgiou, E., Ioannou, A., Haitoglou, C., Tzimagiorgis, G., Tsoukali, H., et al. (2010). p16 promoter methylation in Pb2+ -exposed individuals. Clinical Toxicology, 48(2), 124–128.

    Article  PubMed  Google Scholar 

  • Kuzumaki, N., Ikegami, D., Tamura, R., Hareyama, N., Imai, S., Narita, M., et al. (2011). Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus, 21(2), 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Labonte, B., Yerko, V., Gross, J., Mechawar, N., Meaney, M. J., Szyf, M., et al. (2012). Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biological Psychiatry, 72(1), 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., et al. (2005). Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environmental Health Perspectives, 113(7), 894–899.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leggett, R. W. (1993). An age-specific kinetic model of lead metabolism in humans. Environmental Health Perspectives, 101(7), 598–616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, W., Song, X., Zhang, H., Yang, Y., Jiang, C., Xiao, B., et al. (2011). Association study of RELN polymorphisms with schizophrenia in Han Chinese population. Progress in Neuropsychopharmacology and Biological Psychiatry, 35(6), 1505–1511.

    Article  CAS  Google Scholar 

  • Li, N., Zhang, P., Qiao, M., Shao, J., Li, H., & Xie, W. (2015). The effects of early life lead exposure on the expression of P2X7 receptor and synaptophysin in the hippocampus of mouse pups. Journal of Trace Elements in Medicine and Biology, 30, 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Zhao, G., Qiao, M., Shao, J., Liu, X., Li, H., et al. (2014). The effects of early life lead exposure on the expression of insulin-like growth factor 1 and 2 (IGF1, IGF2) in the hippocampus of mouse pups. Food and Chemical Toxicology, 63, 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Lucchini, R. G., Zoni, S., Guazzetti, S., Bontempi, E., Micheletti, S., Broberg, K., et al. (2012). Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents. Environmental Research, 118, 65–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445.

    Article  CAS  PubMed  Google Scholar 

  • Markham, J. A., & Koenig, J. I. (2011). Prenatal stress: Role in psychotic and depressive diseases. Psychopharmacology, 214(1), 89–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Tellez, R. I., Hernandez-Torres, E., Gamboa, C., & Flores, G. (2009). Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse, 63(9), 794–804.

    Article  CAS  PubMed  Google Scholar 

  • Masten, A. S., & Narayan, A. J. (2012). Child development in the context of disaster, war, and terrorism: Pathways of risk and resilience. Annual Review of Psychology, 63, 227–257.

    Article  PubMed  Google Scholar 

  • Matrisciano, F., Tueting, P., Dalal, I., Kadriu, B., Grayson, D. R., Davis, J. M., et al. (2013). Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 68, 184–194.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matthews, S. G., & Phillips, D. I. (2010). Minireview: Transgenerational inheritance of the stress response: A new frontier in stress research. Endocrinology, 151(1), 7–13.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, M. M., Auger, A. P., Bale, T. L., De Vries, G. J., Dunn, G. A., Forger, N. G., et al. (2009). The epigenetics of sex differences in the brain. Journal of Neuroscience, 29(41), 12815–12823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McEwen, B., & Tucker, P. (2011). Critical biological pathways for chronic psychosocial stress and research opportunities to advance the consideration of stress in chemical risk assessment. American Journal of Public Health, 101(S1), S131–S139.

    Article  PubMed Central  PubMed  Google Scholar 

  • McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., et al. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neurosciences, 18(1-2), 49–72.

    Article  CAS  Google Scholar 

  • Morgan, C. P., & Bale, T. L. (2011). Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. Journal of Neuroscience, 31(33), 11748–11755.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morse, S. J., Butler, A. A., Davis, R. L., Soller, I. J., & Lubin, F. D. (2015). Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits. Biology, 4(2), 298–313.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mueller, B. R., & Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. The Journal of Neuroscience, 28(36), 9055–9065.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mulligan, C. J., D’Errico, N. C., Stees, J., & Hughes, D. A. (2012). Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics, 7(8), 853–857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mumtaz, M. M., Ruiz, P., & De Rosa, C. T. (2007). Toxicity assessment of unintentional exposure to multiple chemicals. Toxicology and Applied Pharmacology, 223(2), 104–113.

    Article  CAS  PubMed  Google Scholar 

  • Mychasiuk, R., Ilnytskyy, S., Kovalchuk, O., Kolb, B., & Gibb, R. (2011). Intensity matters: Brain, behaviour and the epigenome of prenatally stressed rats. Neuroscience, 180, 105–110.

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program. (2012). Health effects of low-level lead. Office of Health Assessment and Translation.

    Google Scholar 

  • Neal, A. P., Stansfield, K. H., & Guilarte, T. R. (2012). Enhanced nitric oxide production during lead (Pb(2)(+)) exposure recovers protein expression but not presynaptic localization of synaptic proteins in developing hippocampal neurons. Brain Research, 1439, 88–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Needleman, H. L., Riess, J. A., Tobin, M. J., Biesecker, G. E., & Greenhouse, J. B. (1996). Bone lead levels and delinquent behavior. Journal of the American Medical Association, 275(5), 363–369.

    Article  CAS  PubMed  Google Scholar 

  • Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3(2), 97–106.

    Article  PubMed  Google Scholar 

  • O’Connor, T. G., Heron, J., Golding, J., & Glover, V. (2003). Maternal antenatal anxiety and behavioural/emotional problems in children: A test of a programming hypothesis. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44(7), 1025–1036.

    Article  PubMed  Google Scholar 

  • O’Flaherty, E. J. (1991). Physiologically based models for bone-seeking elements. II. Kinetics of lead disposition in rats. Toxicology and Applied Pharmacology, 111(2), 313–331.

    Article  PubMed  Google Scholar 

  • Owen, D., Andrews, M. H., & Matthews, S. G. (2005). Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neuroscience & Biobehavioral Reviews, 29(2), 209–226.

    Google Scholar 

  • Pena, C. J., Monk, C., & Champagne, F. A. (2012). Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE, 7(6): e39791. doi:10.1371/journal.pone.0039791.

    Google Scholar 

  • Pfeifer, G. P., Kadam, S., & Jin, S. G. (2013). 5-Hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics & Chromatin, 6(1), 10.

    Article  CAS  Google Scholar 

  • Pilsner, J. R., Hu, H., Ettinger, A., Sanchez, B. N., Wright, R. O., Cantonwine, D., et al. (2009). Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environmental Health Perspectives, 117(9), 1466–1471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pirkle, J. L., Brody, D. J., Gunter, E. W., Kramer, R. A., Paschal, D. C., Flegal, K. M., et al. (1994). The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). Journal of the American Medical Association, 272(4), 284–291.

    Article  CAS  PubMed  Google Scholar 

  • Plumlee, G. S., Durant, J. T., Morman, S. A., Neri, A., Wolf, R. E., Dooyema, C. A., et al. (2013). Linking geological and health sciences to assess childhood lead poisoning from artisanal gold mining in Nigeria. Environmental Health Perspectives, 121(6), 744–750.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qiu, A., Rifkin-Graboi, A., Chen, H., Chong, Y. S., Kwek, K., Gluckman, P. D., et al. (2013). Maternal anxiety and infants’ hippocampal development: Timing matters. Translational Psychiatry, 3, e306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rice, D. C. (1988). Schedule-controlled behavior in infant and juvenile monkeys exposed to lead from birth. Neurotoxicology, 9, 75–88.

    CAS  PubMed  Google Scholar 

  • Rice, D. C. (1990). Lead-induced behavioral impairment on a spatial discrimination reversal task in monkeys during different periods of development. Toxicology and Applied Pharmacology, 106, 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Rice, D. C., & Gilbert, S. G. (1990). Sensitive periods for lead-induced behavioral impairment (nonspatial discrimination reversal) in monkeys. Toxicology and Applied Pharmacology, 102, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Rice, D. C., & Karpinski, K. F. (1988). Lifetime low-level lead exposure produces deficits in delayed alternation in adult monkeys. Neurotoxicology and Teratology, 10, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Richetto, J., & Riva, M. A. (2014). Prenatal maternal factors in the development of cognitive impairments in the offspring. Journal of Reproductive Immunology, 104–105, 20–25.

    Article  PubMed  Google Scholar 

  • Rossi-George, A., Virgolini, M. B., Weston, D., Thiruchelvam, M., & Cory-Slechta, D. A. (2011). Interactions of lifetime lead exposure and stress: Behavioral; neurochemical and HPA axis effects. Neurotoxicology, 32(1), 83–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutter, M. (2006). Implications of resilience concepts for scientific understanding. Annals of the New York Academy of Sciences, 1094, 1–12.

    Article  PubMed  Google Scholar 

  • Sanchez-Martin, F. J., Lindquist, D. M., Landero-Figueroa, J., Zhang, X., Chen, J., Cecil, K. M., et al. (2015). Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology, 46, 92–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarasua, S. M., Vogt, R. F., Henderson, L. O., Jones, P. A., & Lybarger, J. A. (2000). Serum immunoglobulins and lymphocyte subset distributions in children and adults living in communities assessed for lead and cadmium exposure. Journal of Toxicology and Environmental Health, Part A, 60(1), 1–15.

    Article  CAS  Google Scholar 

  • Schneider, J. S., Chen, J., Setzo, C., Anderson, D. W., Lanphear, B. P., & Ho, S.-M. (2010). Methylation status of genes related to nervous system development and function as well as other key biological pathways is significantly affected by low level childhood lead exposure (Program No. 360.5). 2010 Neuroscience Meeting Planner.

    Google Scholar 

  • Schneider, J. S., Kidd, S. K., & Anderson, D. W. (2013). Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicology Letters, 217(1), 75–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuurmans, C., & Kurrasch, D. M. (2013). Neurodevelopmental consequences of maternal distress: What do we really know? Clinical Genetics, 83(2), 108–117.

    Article  CAS  PubMed  Google Scholar 

  • Schwabe, L., Bohbot, V. D., & Wolf, O. T. (2012). Prenatal stress changes learning strategies in adulthood. Hippocampus, 22(11), 2136–2143.

    Article  PubMed  Google Scholar 

  • Schwartz, J. (1994). Low-level lead exposure and children’s IQ: A meta-analysis and search for a threshold. Environmental Research, 65, 42–55.

    Article  CAS  PubMed  Google Scholar 

  • Seery, M. D., Holman, E. A., & Silver, R. C. (2010). Whatever does not kill us: Cumulative lifetime adversity, vulnerability, and resilience. Journal of Personal and Social Psychology, 99(6), 1025–1041.

    Article  Google Scholar 

  • Sen, A., Heredia, N., Senut, M. C., Hess, M., Land, S., Qu, W., et al. (2015). Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots. Epigenomics, 7(3), 379–393.

    Article  CAS  PubMed  Google Scholar 

  • Senut, M. C., Sen, A., Cingolani, P., Shaik, A., Land, S. J., & Ruden, D. M. (2014). Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicological Sciences, 139(1), 142–161.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stansfield, K. H., Pilsner, J. R., Lu, Q., Wright, R. O., & Guilarte, T. R. (2012). Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): Implications for an environmental basis of neurodevelopmental disorders. Toxicological Sciences, 127(1), 277–295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sullivan, R. M., & Dufresne, M. M. (2006). Mesocortical dopamine and HPA axis regulation: Role of laterality and early environment. Brain Research, 1076(1), 49–59.

    Article  CAS  PubMed  Google Scholar 

  • Szulwach, K. E., Li, X., Li, Y., Song, C. X., Wu, H., Dai, Q., et al. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12), 1607–1616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48(3–4), 245–261.

    Article  PubMed  Google Scholar 

  • Taylor, C. M., Golding, J., & Emond, A. M. (2015). Adverse effects of maternal lead levels on birth outcomes in the ALSPAC study: A prospective birth cohort study. BJOG, 122(3), 322–328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thayer, Z. M., & Kuzawa, C. W. (2014). Early origins of health disparities: Material deprivation predicts maternal evening cortisol in pregnancy and offspring cortisol reactivity in the first few weeks of life. American Journal of Human Biology, 26(6), 723–730.

    Article  PubMed  Google Scholar 

  • Tidey, J. W., & Miczek, K. A. (1996). Social defeat stress selectively alters mesocorticolimbic dopamine release: An in vivo microdialysis study. Brain Research, 721(1-2), 140–149.

    Article  CAS  PubMed  Google Scholar 

  • Virgolini, M. B., Rossi-George, A., Lisek, R., Weston, D. D., Thiruchelvam, M., & Cory-Slechta, D. A. (2008a). CNS effects of developmental Pb exposure are enhanced by combined maternal and offspring stress. Neurotoxicology, 29(5), 812–827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Virgolini, M. B., Rossi-George, A., Weston, D., & Cory-Slechta, D. A. (2008b). Influence of low level maternal Pb exposure and prenatal stress on offspring stress challenge responsivity. Neurotoxicology, 29(6), 928–939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Y., Ma, Y., Cheng, W., Jiang, H., Zhang, X., Li, M., et al. (2015a). Sexual differences in long-term effects of prenatal chronic mild stress on anxiety-like behavior and stress-induced regional glutamate receptor expression in rat offspring. International Journal of Developmental Neuroscience, 41, 80–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Ma, Y., Hu, J., Cheng, W., Jiang, H., Zhang, X., et al. (2015b). Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats. Neuroscience, 301, 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.

    Article  CAS  PubMed  Google Scholar 

  • Weaver, I. C., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S., Meaney, M. J., et al. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 25(47), 11045–11054.

    Article  CAS  PubMed  Google Scholar 

  • Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior, and Immunity, 19(4), 296–308.

    Article  CAS  PubMed  Google Scholar 

  • Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience & Biobehavioral Reviews, 32(6), 1073–1086.

    Article  CAS  Google Scholar 

  • Weinstock, M. (2011). Sex-dependent changes induced by prenatal stress in cortical and hippocampal morphology and behaviour in rats: An update. Stress, 14(6), 604–613.

    CAS  PubMed  Google Scholar 

  • Weisenberger, D. J., Campan, M., Long, T. I., Kim, M., Woods, C., Fiala, E., et al. (2005). Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Research, 33(21), 6823–6836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welberg, L. A., Seckl, J. R., & Holmes, M. C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: Possible implications for behaviour. Neuroscience, 104(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Wetmur, J. G., Kaya, A. H., Plewinska, M., & Desnick, R. J. (1991). Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: Implications for molecular screening of individuals for genetic susceptibility to lead poisoning. American Journal of Human Genetics, 49(4), 757–763.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson, C. A., Schade, R., & Terry, A. V., Jr. (2012). Variable prenatal stress results in impairments of sustained attention and inhibitory response control in a 5-choice serial reaction time task in rats. Neuroscience, 218, 126–137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright, R. O., Schwartz, J., Wright, R. J., Bollati, V., Tarantini, L., Park, S. K., et al. (2010). Biomarkers of lead exposure and DNA methylation within retrotransposons. Environmental Health Perspectives, 118(6), 790–795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu, J., Basha, M. R., Brock, B., Cox, D. P., Cardozo-Pelaez, F., McPherson, C. A., et al. (2008). Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. Journal of Neuroscience, 28(1), 3–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, J., Yang, B., Yan, C., Hu, H., Cai, S., Liu, J., et al. (2013). Effects of duration and timing of prenatal stress on hippocampal myelination and synaptophysin expression. Brain Research, 1527, 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Yang, A. S., Estecio, M. R., Doshi, K., Kondo, Y., Tajara, E. H., & Issa, J. P. (2004). A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Research, 32(3), e38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yao, Y., Robinson, A. M., Zucchi, F. C., Robbins, J. C., Babenko, O., Kovalchuk, O., et al. (2014). Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Medicine, 12, 121.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu, Z. Z., Hou, L., Bollati, V., Tarantini, L., Marinelli, B., Cantone, L., et al. (2012). Predictors of global methylation levels in blood DNA of healthy subjects: A combined analysis. International Journal of Epidemiology, 41(1), 126–139.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zucchi, F. C., Yao, Y., Ward, I. D., Ilnytskyy, Y., Olson, D. M., Benzies, K., et al. (2013). Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One, 8(2), e56967.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay S. Schneider PhD .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

5hmC:

5-Hydroxymethylcytosine

5mC:

5-Methylcytosin

Aβ:

Amyloid-β

AβPP:

Amyloid-β protein precursor

AD:

Alzheimer’s disease

ALAD:

Aminolevulinic acid dehydratase

BACE1:

Beta-secretase 1

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

CpG:

–C–phosphate–G–

CRF:

Corticotropin-releasing factor

DNA:

Deoxyribonucleic acid

DNMTs:

DNA methyltransferases

DOPAC:

3,4-Dihydroxyphenylacetic acid

GR:

Glucocorticoid receptor

HCY:

Homocysteine

hESCs:

Human embryonic stem cells

HPA axis:

Hypothalamic–pituitary–adrenal axis

IQ:

Intelligence quotient

NMDA:

n-methyl-d-aspartate

SES:

Socioeconomic status

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schneider, J.S., Cory-Slechta, D.A. (2016). Epigenetic Mechanisms of Adverse Neurodevelopment in Response to Lead Exposure and Prenatal Stress and the Combination: The Road Ahead. In: Hollar, D. (eds) Epigenetics, the Environment, and Children’s Health Across Lifespans. Springer, Cham. https://doi.org/10.1007/978-3-319-25325-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25325-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25323-7

  • Online ISBN: 978-3-319-25325-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics