Skip to main content
Log in

A high-order space-time spectral method for the distributed-order time-fractional telegraph equation

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a high-order and fast numerical method based on the space-time spectral scheme is obtained for solving the space-time fractional telegraph equation. In the proposed method, for discretization of temporal and spatial variables, we consider two cases. We use the Legendre functions for discretization in time. To obtain the full discrete numerical approach, we use a Fourier-like orthogonal function. The convergence and stability analysis for the presented numerical approach is studied and analyzed. Some numerical examples are given for the effectiveness of the numerical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

No data were used to support this study.

References

  1. Benson D, Schumer R, Meerschaert M, Wheatcraft S (2001) Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp Porous Media 42:211–240

    Article  MathSciNet  Google Scholar 

  2. Hilfer R (2000) Applications of fractional calculus in physics. Word Scientific, Singapore

    Book  Google Scholar 

  3. Fu H, Wang H (2017) A preconditioned fast finite difference method for space-time fractional partial differential equations,. Fract Calc Appl Anal 20:88–116

    Article  MathSciNet  Google Scholar 

  4. Derakhshan MH, Aminataei A (2022) A numerical method for finding solution of the distributed-order time-fractional forced Korteweg–De Vries equation including the Caputo fractional derivative. Math Methods Appl Sci 45(5):3144–3165

    Article  MathSciNet  Google Scholar 

  5. Odibat Z, Erturk VS, Kumar P, Govindaraj V (2021) Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor–Corrector scheme. Phys Scr 96:125213

    Article  ADS  Google Scholar 

  6. Kumar P, Erturk VS, Murillo-Arcila M, Harley C (2022) Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid. Int J Nonlinear Sci Numer Simul 24(6):2089–2111

    Article  MathSciNet  Google Scholar 

  7. Mahatekar Y, Scindia PS, Kumar P (2023) A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives. Phys Scr 98:024001

    Article  ADS  Google Scholar 

  8. Sivalingam SM, Kumar P, Govindaraj V (2023) A novel numerical scheme for fractional differential equations using extreme learning machine. Physica A 622:128887

    Article  MathSciNet  Google Scholar 

  9. Marasi HR, Derakhshan MH, Joujehi AS, Kumar P (2023) Higher-order fractional linear multi-step methods. Phys Scr 98:024004

    Article  ADS  Google Scholar 

  10. Ansari A, Derakhshan MH (2024) Time-space fractional Euler–Poisson–Darboux equation with Bessel fractional derivative in infinite and finite domains. Math Comput Simul 218:383–402

    Article  MathSciNet  Google Scholar 

  11. Chen W, Wang S (2020) A 2nd-order ADI finite difference method for a 2D fractional Black-Scholes equation governing European two asset option pricing. Math Comput Simul 171:279–293

    Article  MathSciNet  Google Scholar 

  12. An X, Liu F, Zheng M, Anh VV, Turner IW (2021) A space-time spectral method for time-fractional Black–Scholes equation. Appl Numer Math 165:152–166

    Article  MathSciNet  Google Scholar 

  13. Zheng M, Liu F, Anh V, Turner I (2016) A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model 40(7–8):4970–4985

    Article  MathSciNet  Google Scholar 

  14. Zhang H, Jiang X, Wang C, Fan W (2018) Galerkin–Legendre spectral schemes for nonlinear space fractional Schrödinger equation. Numer Algorithms 79(1):337–356

    Article  MathSciNet  Google Scholar 

  15. Bhatter S, Purohit SD, Nisar KS, Munjam SR (2024) Some fractional calculus findings associated with the product of incomplete \(\aleph \)-function and Srivastava polynomials. Int J Math Comput Eng 2(1):97–116

    Article  Google Scholar 

  16. Bhrawy AH, Alhamed YA, Baleanu D, Al-Zahrani A (2014) New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions, Fractional Calculus and Applied. Analysis 17:1137–1157

    Google Scholar 

  17. Zhao X, Li X, Li Z (2022) Fast and efficient finite difference method for the distributed-order diffusion equation based on the staggered grids. Appl Numer Math 174:34–45

    Article  MathSciNet  Google Scholar 

  18. Ansari A, Derakhshan MH, Askari H (2022) Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration. Commun Nonlinear Sci Numer Simul 113:106590

    Article  MathSciNet  Google Scholar 

  19. Habibirad A, Azin H, Hesameddini E (2023) A capable numerical meshless scheme for solving distributed order time-fractional reaction-diffusion equation. Chaos, Solitons Fractals 166:112931

    Article  MathSciNet  Google Scholar 

  20. Kumar Y, Srivastava N, Singh A, Singh VK (2023) Wavelets based computational algorithms for multidimensional distributed order fractional differential equations with nonlinear source term. Comput Math Appl 132:73–103

    Article  MathSciNet  Google Scholar 

  21. Heydari MH, Razzaghi M, Baleanu D (2023) A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrödinger equation. Commun Nonlinear Sci Numer Simul 116:106873

    Article  Google Scholar 

  22. Sabermahani S, Ordokhani Y (2024) Solving distributed-order fractional optimal control problems via the Fibonacci wavelet method. J Vib Control 30:418–432

    Article  MathSciNet  Google Scholar 

  23. Mulimani M, Srinivasa K (2024) A novel approach for Benjamin–Bona–Mahony equation via ultraspherical wavelets collocation method. Int J Math Comput Eng 2(2):39–52

    Google Scholar 

  24. İlhan Ö, Sahin G (2024) A numerical approach for an epidemic SIR model via Morgan-Voyce series. Int J Math Comput Eng 2(1):123–138

    Article  Google Scholar 

  25. Duran S (2021) Dynamic interaction of behaviors of time-fractional shallow water wave equation system. Mod Phys Lett B 35(22):2150353

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Duran S, Durur H, Yavuz M, Yokus A (2023) Discussion of numerical and analytical techniques for the emerging fractional order murnaghan model in materials science. Opt Quant Electron 55(6):571

    Article  Google Scholar 

  27. Erdogan F (2024) A second order numerical method for singularly perturbed Volterra integro-differential equations with delay. Int J Math Comput Eng 2(1):85–96

    Article  Google Scholar 

  28. Yokus A, Durur H, Duran S, Islam MT (2022) Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput Appl Math 41(4):174

    Article  MathSciNet  Google Scholar 

  29. Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract Calc Appl Anal 4:421–442

    MathSciNet  Google Scholar 

  30. Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46:223–234

    Google Scholar 

  31. Naber M (2004) Distributed order fractional subdiffusion. Fractals 12:23–32

    Article  MathSciNet  Google Scholar 

  32. Lorenzo C, Hartley T (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29:57–98

    Article  MathSciNet  Google Scholar 

  33. Ye H, Liu F, Anh V (2015) Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J Comput Phys 298:652–660

    Article  ADS  MathSciNet  Google Scholar 

  34. Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J Comput Phys 315:169–181

    Article  ADS  MathSciNet  Google Scholar 

  35. Bu W, Xiao A, Zeng W (2017) Finite difference/finite element methods for distributed-order time fractional diffusion equations. J Sci Comput 72(3):422–441

    Article  MathSciNet  Google Scholar 

  36. Marasi HR, Derakhshan MH (2022) A composite collocation method based on the fractional Chelyshkov wavelets for distributed-order fractional mobile-immobile advection-dispersion equation. Math Model Anal 27(4):590–609

    Article  MathSciNet  Google Scholar 

  37. Gao GH, Sun ZZ (2017) Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations. Numer Algorithms 74:675–697

    Article  MathSciNet  Google Scholar 

  38. Camargo RF, Chiacchio AO, de Oliveira EC (2008) Differentiation to fractional orders and the fractional telegraph equation. J Math Phys 49(3):033505

    Article  ADS  MathSciNet  Google Scholar 

  39. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives, theory and applications. Gordon and Breach Science Publishers, Philadelphia

    Google Scholar 

  40. Askey R (1975) Orthogonal polynomials and special functions. SIAM Philadelphia, Pennsylvania

    Book  Google Scholar 

  41. Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model 34:200–218

    Article  MathSciNet  Google Scholar 

  42. Ilic M, Liu F, Turner I, Anh V (2006) Numerical approximation of a fractional-in-space diffusion equation (II) with nonhomogeneous boundary conditions, Fractional Calculus and Applied. Analysis 9:333–349

  43. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    Google Scholar 

  44. Li X, Xu C (2009) A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal 47:2108–2131

    Article  MathSciNet  Google Scholar 

  45. Erin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Part Differ Equ 22:558–576

    Article  MathSciNet  Google Scholar 

  46. Shen J, Tang T, Wang LL (2011) Spectral methods: algorithms, analysis and applications, springer series in computational mathematics, vol 41. Springer, Heidelberg

    Google Scholar 

  47. Shen J, Tang T (2007) Spectral and high-order methods with applications. Science Press, Beijing

    Google Scholar 

  48. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225:1533–1552

    Article  ADS  MathSciNet  Google Scholar 

  49. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

NA

Funding

NA

Author information

Authors and Affiliations

Authors

Contributions

MHD was involved in the conceptualization, visualization, resources, formal analysis, software, investigation, and writing—original draft. PK contributed to the conceptualization, investigation, visualization, writing—review and editing. SS contributed to the formal analysis, supervision, writing–review and editing.

Corresponding author

Correspondence to Pushpendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshan, M.H., Kumar, P. & Salahshour, S. A high-order space-time spectral method for the distributed-order time-fractional telegraph equation. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-024-01408-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-024-01408-5

Keywords

Mathematics Subject Classification

Navigation