Skip to main content

Advertisement

Log in

Variable structure-based controllers applied to the modified Hovorka model for type 1 diabetes

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Despite the fact that diabetes treatment technology is constantly evolving, research groups continue to highlight the problem of blood glucose concentration management as a critical concern. Uncontrolled blood glucose levels in the body can result from pancreas failure. The majority of diabetic patients are unable to maintain an optimal glucose concentration level and effective control is required to improve diabetic treatment. In the formulation of a control algorithm for an artificial pancreas, the modified Hovorka model was recently introduced to further explain the glucose-insulin dynamics. In this research paper, different control strategies have been implemented and compared: sliding mode control, integral and double integral sliding mode control and proportional integral derivative control used as a baseline. The goal is the evaluation of nonlinear controllers using Lyapunov theory, applied to a biologically relevant nonlinear complex model able to describe the interaction between blood glucose and insulin, based on the Hovorka equations. The proposed controllers have to achieve the desired reference level of stability and robustness in glucose concentration regulation. The key performance indexes adopted are chattering, settling time and steady-state error, also considering computational complexities. A genetic algorithm has also been adopted for parameter optimization to improve each controller’s performance. The effect of perturbations in the form of food consumption was also analyzed and compared for the different control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Simulation data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

GC:

Glucose concentration

CGM:

Continuous glucose monitoring

APs:

Artificial pancreas

GA:

Genetic algorithm

MHo:

Modified Hovorka model

MPC:

Model predictive control

SMC:

Sliding mode control

ISMC:

Integral SMC

DISMC:

Double ISMC

ITAE:

Integral of absolute magnitude of the error

IAE:

Integral of absolute error

FLOP:

Floating point operations

References

  1. Beran D, Lazo-Porras M, Mba CM, Mbanya JC (2021) A global perspective on the issue of access to insulin. Diabetologia 64(5):954–962

    Article  Google Scholar 

  2. Pompa M, Panunzi S, Borri A, De Gaetano A (2021) A comparison among three maximal mathematical models of the glucose-insulin system. PLoS ONE 16(9):0257789

    Article  Google Scholar 

  3. Hariri A et al (2011) Observer-based state feedback for enhanced insulin control of type ‘i’diabetic patients. Open Biomed Eng J 5:98

    Article  Google Scholar 

  4. Cobelli C, Renard E, Kovatchev B (2011) Artificial pancreas: past, present, future. Diabetes 60(11):2672–2682

    Article  Google Scholar 

  5. Thabit H, Hovorka R (2016) Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59(9):1795–1805

    Article  Google Scholar 

  6. Doyle FJ III, Huyett LM, Lee JB, Zisser HC, Dassau E (2014) Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5):1191–1197

    Article  Google Scholar 

  7. Kovatchev BP, Breton M, Dalla Man C, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. SAGE Publications, Los Angeles

    Google Scholar 

  8. Hachimi ME, Ballouk A, Lebbar H (2016) Overcoming control challenges in the artificial pancreas. In: 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA), pp 1–6. https://doi.org/10.1109/SITA.2016.7772321

  9. Mehmood S, Ahmad I, Arif H, Ammara UE, Majeed A (2020) Artificial pancreas control strategies used for type 1 diabetes control and treatment: a comprehensive analysis. Appl Syst Innov 3(3):31

    Article  Google Scholar 

  10. Colmegna P, Wang K, Garcia-Tirado J, Breton MD (2020) Mapping data to virtual patients in type 1 diabetes. Control Eng Pract 103:104605

    Article  Google Scholar 

  11. Mahmud F, Isse NH, Daud NAM, Morsin M (2017) Evaluation of pd/pid controller for insulin control on blood glucose regulation in a type-i diabetes. In: AIP conference proceedings, vol. 1788 (1), p 030072. AIP Publishing LLC

  12. Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE (2008) An improved PID switching control strategy for type 1 diabetes. IEEE Trans Biomed Eng 55(3):857–865. https://doi.org/10.1109/TBME.2008.915665

    Article  Google Scholar 

  13. Al-Fandi M, Jaradat MA, Sardahi Y (2012) Optimal pid-fuzzy logic controller for type 1 diabetic patients. In: 2012 8th international symposium on mechatronics and its applications, pp 1–7. https://doi.org/10.1109/ISMA.2012.6215171

  14. Colmegna P, Garelli F, De Battista H, Sánchez-Peña R (2018) Automatic regulatory control in type 1 diabetes without carbohydrate counting. Control Eng Pract 74:22–32

    Article  Google Scholar 

  15. Ruiz-Velázquez E, Femat R, Campos-Delgado D (2004) Blood glucose control for type i diabetes mellitus: a robust tracking h\(\infty \) problem. Control Eng Pract 12(9):1179–1195

    Article  Google Scholar 

  16. Mythreyi K, Subramanian SC, Kumar RK (2014) Nonlinear glucose-insulin control considering delays-part ii: control algorithm. Control Eng Pract 28:26–33

    Article  Google Scholar 

  17. Incremona GP, Messori M, Toffanin C, Cobelli C, Magni L (2018) Model predictive control with integral action for artificial pancreas. Control Eng Pract 77:86–94

    Article  Google Scholar 

  18. Daud NAM, Mahmud F, Jabbar MH (2015) Meal simulation in glucose-insulin reaction analysis using Hovorka model towards system-on-chip implementation. ARPN J Eng Appl Sci 10(19):8927–8935

    Google Scholar 

  19. Abu-Rmileh A, Garcia-Gabin W, Zambrano D (2010) Internal model sliding mode control approach for glucose regulation in type 1 diabetes. Biomed Signal Process Control 5(2):94–102

    Article  Google Scholar 

  20. Alam W, Khan Q, Ali Riaz R, Akmeliawati R (2019) Glucose-insulin stabilization in type-1 diabetic patient: a uniform exact differentiator-based robust integral sliding mode control approach. Int J Distrib Sens Netw 15(3):1550147719833573

    Article  Google Scholar 

  21. Quiroz G (2019) The evolution of control algorithms in artificial pancreas: a historical perspective. Annu Rev Control 48:222–232

    Article  MathSciNet  Google Scholar 

  22. Tejedor Hernandez MA (2021) Glucose regulation for in-silico type 1 diabetes patients using reinforcement learning. UiT Norges arktiske universitet. https://munin.uit.no/handle/10037/20861

  23. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Federici MO, Pieber TR, Schaller HC, Schaupp L, Vering T et al (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905

    Article  Google Scholar 

  24. Kirubakaran V, Radkakrishnan T, Sivakumaran N (2013) Blood glucose concentration regulation in type 1 diabetics using multi model multi parametric model predictive control: an empirical approach. IFAC Proc Volumes 46(31):291–296

    Article  Google Scholar 

  25. Rahman MS, Badal F, Alam MS, Tanvir M, Khan SM, Das S (2021) Effect of pid controller on blood glucose concentration for varying plasma insulin, independent glucose flux, renal glucose clearance and gut absorption rate. In: 2021 international conference on automation, control and mechatronics for industry 4.0 (ACMI), IEEE, pp 1–6

  26. Mohd YNF, Md SA, Saadi IA, Abdulbari AS (2012) Parameter addition in interaction of glucose and insulin for type 1 diabetes. In: 2012 IEEE-EMBS conference on biomedical engineering and sciences, IEEE, pp 273–278

  27. Som AM, Sherif AA (2015) Simulation work for the control of blood glucose level in type 1 diabetes using hovorka equations. In: Advanced materials research, vol. 1113, pp 739–744

  28. Som AM, Ibrehem AS, Ali SA, et al (2014) System identification in modified diabetic model for nanochip controller. In: Advanced materials research, vol. 938, pp 299–304

  29. Boiroux D, Duun-Henriksen AK, Schmidt S, Nørgaard K, Poulsen NK, Madsen H, Jørgensen JB (2017) Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Eng Pract 58:332–342

    Article  Google Scholar 

  30. Gambhire SJ, Kishore DR, Londhe PS, Pawar SN (2021) Review of sliding mode based control techniques for control system applications. Int J Dyn Control 9:363–378

    Article  MathSciNet  Google Scholar 

  31. Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263

    Article  MathSciNet  MATH  Google Scholar 

  32. Slotine JJE, Li W (1991) Applied Nonlinear Control, vol 199. Prentice hall, Hoboken, New Jersey, U.S, Englewood Cliffs, NJ

  33. Lin J, Cheng KWE, Zhang Z, Cheung N, Xue X, Wong M, Wang D, Bao Y, Chan J, Lam J (2011) Integral sliding mode control and its application on active suspension system. In: 2011 4th international conference on power electronics systems and applications, IEEE, pp 1–6

  34. Pan Y, Yang C, Pan L, Yu H (2018) Integral sliding mode control: performance, modification, and improvement. IEEE Trans Industr Inf 14(7):3087–3096. https://doi.org/10.1109/TII.2017.2761389

    Article  Google Scholar 

  35. Shtessel YB, Shkolnikov IA, Brown MD (2003) An asymptotic second-order smooth sliding mode control. Asian J Control 5(4):498–504

    Article  Google Scholar 

  36. Pradhan R, Subudhi B (2016) Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans Control Syst Technol 24(1):285–292. https://doi.org/10.1109/TCST.2015.2420674

    Article  Google Scholar 

  37. Willmon P (2020) Glucose regulation using an intelligent PID controller. Mathematics Senior Capstone Papers

  38. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Book  Google Scholar 

  39. Young K-K, Kokotovic P, Utkin V (1977) A singular perturbation analysis of high-gain feedback systems. IEEE Trans Autom Control 22(6):931–938

    Article  MathSciNet  MATH  Google Scholar 

  40. Slotine J-JE (1984) Sliding controller design for non-linear systems. Int J Control 40(2):421–434

    Article  MathSciNet  MATH  Google Scholar 

  41. Temeltas H (1998) A fuzzy adaptation technique for sliding mode controllers. In: IEEE international symposium on industrial electronics. Proceedings. ISIE’98 (Cat. No.98TH8357), vol. 1, pp 110–1151. https://doi.org/10.1109/ISIE.1998.707758

  42. Soylu S DK (2016) Comparison of pid based control algorithms for daily blood glucose control. In: International conference on electrical engineering and electronics, 16–17

  43. Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications in engineering design. IEEE Trans Ind Electron 43(5):519–534. https://doi.org/10.1109/41.538609

    Article  Google Scholar 

  44. Nekoui MA, Pakzad M, Pakzad S (2017) Optimal fractional order pid controllers design based on genetic algorithm for time delay systems. In: 2017 international symposium on power electronics (Ee), pp 1–6. https://doi.org/10.1109/PEE.2017.8171685

  45. Incremona GP, Rubagotti M, Ferrara A (2017) Sliding mode control of constrained nonlinear systems. IEEE Trans Autom Control 62(6):2965–2972. https://doi.org/10.1109/TAC.2016.2605043

    Article  MathSciNet  MATH  Google Scholar 

  46. Fisher ME (1991) A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans Biomed Eng 38(1):57–61

    Article  Google Scholar 

  47. Nandi S, Singh T, Mastrandrea LD, Singla P (2017) Optimal meal time after bolusing for type 1 diabetes patients under meal uncertainties. In: 2017 american control conference (ACC), pp 4412–4417. https://doi.org/10.23919/ACC.2017.7963634

  48. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070. https://doi.org/10.1109/TNN.2004.832719

    Article  Google Scholar 

  49. Khaqan A, Nauman A, Shuja S, Khurshaid T, Kim K-C (2022) An intelligent model-based effective approach for glycemic control in type-1 diabetes. Sensors 22(20):7773

    Article  Google Scholar 

  50. Xavier J, Divya N, Krithiga MB, Patnaik S, Panda R (2022) Blood glucose regulation in type-1 diabetic patients using sliding mode control based on nonlinear transformation. IFAC-PapersOnLine 55(1):902–907

    Article  Google Scholar 

  51. Tašić J, Takács M, Kovács L (2022) Control engineering methods for blood glucose levels regulation. Acta Polytechnica Hungarica 19(7)

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Riccardo Caponetto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mughal, I.S., Patanè, L., Xibilia, M.G. et al. Variable structure-based controllers applied to the modified Hovorka model for type 1 diabetes. Int. J. Dynam. Control 11, 3159–3175 (2023). https://doi.org/10.1007/s40435-023-01150-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01150-4

Keywords

Navigation