Skip to main content
Log in

Adaptive multi-objective control allocation with online actuator selection for over-actuated systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents an adaptive control allocation technique for over-actuated systems. The online actuator selection algorithm is used to select the best group of actuators. Also, a multi-objective cost function is utilized for the allocation unit. The virtual and actual control signals in the control allocation methodologies are linked by the effectiveness matrix. In many practical systems, the elements of the effectiveness matrix may vary due to changing operating conditions, nonlinearities, ageing, disturbances and faults. Hence, an online algorithm for estimation of the entries of the effectiveness matrix is presented in this paper. Estimation of the effectiveness matrix will be used for the proposed adaptive actuator selection strategy, employing the Actuator Effectiveness Index (AEI). The AEI is calculated for all the actuators, and the best group of actuators will be subsequently selected. Finally, simulation results are used to show the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Johansen TA, Fossen TI (2013) Control allocation—a survey. Automatica 49(5):1087–1103. https://doi.org/10.1016/j.automatica.2013.01.035

    Article  MathSciNet  MATH  Google Scholar 

  2. Gao Z, Antsaklis PJ (1991) Stability of the pseudo-inverse method for reconfigurable control systems. Int J Control 53(3):717–729. https://doi.org/10.1080/00207179108953643

    Article  MathSciNet  MATH  Google Scholar 

  3. Jin J (2005) Modified pseudoinverse redistribution methods for redundant controls allocation. J Guid Control Dyn 28(5):1076–1079

    Article  Google Scholar 

  4. Vayalali P, McKay M, Gandhi F (2020) Redistributed pseudoinverse control allocation for actuator failure on a compound helicopter. In: Conference: the vertical flight society’s 76th annual forum and technology Display

  5. Buffington JM, Enns DF (1996) Lyapunov stability analysis of daisy chain control allocation. J Guid Control Dyn 19(6):1226–1230. https://doi.org/10.2514/3.21776

    Article  MATH  Google Scholar 

  6. Tohidi SS, Khaki Sedigh A, Buzorgnia D (2016) Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space. Int J Robust Nonlinear Control 26(16):3541–3557

    Article  MathSciNet  MATH  Google Scholar 

  7. Durham WC (1993) Constrained control allocation. J Guid Control Dyn 16(4):717–725

    Article  Google Scholar 

  8. Naderi M, Johansen TA, Khaki SA (2019) A fault tolerant control scheme using the feasible constrained control allocation strategy. Int J Autom Comput 16(5):628–643

    Article  Google Scholar 

  9. Doman DB, Sparks AG (2002) Concepts for constrained control allocation of mixed quadratic and linear effectors. In: Proceedings of the 2002 American control conference (IEEE Cat. No. CH37301), vol. 5. IEEE, pp 3729–3734. https://doi.org/10.1109/ACC.2002.1024507

  10. Frost S, Bodson M, Acosta D (2009) Sensitivity analysis of linear programming and quadratic programming algorithms for control allocation. In: AIAA Infotech@ aerospace conference and AIAA unmanned... unlimited conference, p 1936. https://doi.org/10.2514/6.2009-1936

  11. Härkegård O (2004) Dynamic control allocation using constrained quadratic programming. J Guid Control Dyn 27(6):1028–1034. https://doi.org/10.2514/1.11607

    Article  Google Scholar 

  12. Kolaric P, Lopez VG, Lewis FL (2020) Optimal dynamic control allocation with guaranteed constraints and online reinforcement learning. Automatica 122:109265

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen L, Edwards C, Alwi H, Sato M (2020) Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica 114:108829

    Article  MathSciNet  MATH  Google Scholar 

  14. Grauer JA, Pei J (2022) Minimum-variance control allocation considering parametric model uncertainty. In: AIAA SCITECH 2022 Forum, p 0749

  15. Casavola A, Garone E (2010) Fault-tolerant adaptive control allocation schemes for overactuated systems. Int J Robust Nonlinear Control 20(17):1958–1980. https://doi.org/10.1002/rnc.1561

    Article  MathSciNet  MATH  Google Scholar 

  16. Doman DB, Ngo AD (2002) Dynamic inversion-based adaptive/reconfigurable control of the X-33 on ascent. J Guid Control Dyn 25(2):275–284. https://doi.org/10.2514/2.4879

    Article  Google Scholar 

  17. Ahmad H (2009) Fault adaptation by reconfiguring flight controls using control allocation. Ph.d dissertation, Limerick University

  18. Kim J, Yang I, Lee D (2011) Accommodation of actuator faults using control allocation with modified daisy chaining. In: 2011 11th International conference on control, automation and systems. IEEE, pp 717–720

  19. Naderi M, Khaki SA (2020) Actuator selection for over-actuated systems using the actuator effectiveness index. Int J Dyn Control 8(3):991–998. https://doi.org/10.1007/s40435-020-00610-5

    Article  Google Scholar 

  20. Wang Y, Gao J, Li K, Chen H (2020) Integrated design of control allocation and triple-step control for over-actuated electric ground vehicles with actuator faults. J Franklin Inst 357(6):3150–3167

    Article  MathSciNet  MATH  Google Scholar 

  21. Da Ronch A, Ghoreyshi M, Vallespin D, Badcock K, Mengmeng Z, Opplestrup J, Rizzi A (2011) A framework for constrained control allocation using CFD-based tabular data. In: 49th AIAA aerospace sciences meeting including the new horizons, forum and aerospace exposition, p 925. https://doi.org/10.2514/6.2011-925

  22. Ioannou P, Fidan B (2006) Adaptive control tutorial. Soc Ind Appl Math

  23. Ioannou PA, Sun J (1996) Robust adaptive control, vol 1. PTR Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  24. Antunes CH, Liu GP, Yang JB, Whidborne JF (2006) Multiobjective optimisation and control. In: Series: engineering systems modelling and control, research studies press (2003) ISBN 0 86380 264 8

  25. Dadhich S, Birk W (2014) Analysis and control of an extended quadruple tank process. In: 2014 European control conference (ECC). IEEE, pp 838–843. https://doi.org/10.1109/ECC.2014.6862290

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Reza Jafari.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, S.R., Khaki-Sedigh, A. & Birk, W. Adaptive multi-objective control allocation with online actuator selection for over-actuated systems. Int. J. Dynam. Control 11, 1220–1229 (2023). https://doi.org/10.1007/s40435-022-01054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-01054-9

Keywords

Navigation