Skip to main content
Log in

Actuator selection for over-actuated systems using the actuator effectiveness index

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a new actuator selection methodology for over-actuated systems based on the actuator effectiveness index. In the proposed method, possible actuator candidates are quantitatively compared. The index is calculated for all candidates and is then used to select the appropriate actuator set based on their effectiveness. The desirable properties for the input selection method are discussed and several examples are presented to show that the results based on the proposed index are compatible with the field knowledge. Furthermore, the proposed actuator selection method is employed to set the actuators groups in the daisy chain type control allocation approaches.This leads to a better initial selection of the actuators and reduces the computational burden of the daisy chain type methods by considering the most effective actuators in the first group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van De Wal M, De Jager B (2001) A review of methods for input/output selection. Automatica 37(4):487–510

    Article  MathSciNet  Google Scholar 

  2. Govin R, Powers GJ (1982) Control system synthesis strategies. AIChE J 28(1):60–73

    Article  Google Scholar 

  3. Daoutidis P, Kravaris C (1992) Structural evaluation of control configurations for multivariable nonlinear processes. Chem Eng Sci 47(5):1091–1107

    Article  Google Scholar 

  4. Hać A, Liu L (1993) Sensor and actuator location in motion control of flexible structures. J Sound Vib 167(2):239–261

    Article  Google Scholar 

  5. Gawronski W, Lim KB (1996) Balanced actuator and sensor placement for flexible structures. Int J Control 65(1):131–145

    Article  MathSciNet  Google Scholar 

  6. Samar R, Postlethwaite I (1994) Multivariable controller design for a high performance aero-engine. In: Proceedings of international conference on control, pp 1312–1317

  7. Biss D, Perkins JD (1993) Application of input-output controllability analysis to chemical processes. In: Proceedings of European control conference, pp 1056–1061

  8. Hovd M, Skogestad S (1993) Procedure for regulatory control structure selection with application to the FCC process. AIChE J 39(12):1938–1953

    Article  Google Scholar 

  9. Liu X, Chen B, Lin Z (2003) On the problem of general structural assignments of linear systems through sensor/actuator selection. Automatica 39(2):233–241

    Article  MathSciNet  Google Scholar 

  10. Keller JP, Bonvin D (1987) Selection of inputs for the purpose of model reduction and controller design. IFAC Proc Vol 20(5):209–214

    Article  Google Scholar 

  11. Chen J, Freudenberg JS, Nett CN (1994) The role of the condition number and the relative gain array in robustness analysis. Automatica 30(6):1029–1035

    Article  MathSciNet  Google Scholar 

  12. Al-Sulaiman F, Zaman S (1994) Actuator placement in lumped parameter systems subjected to disturbance. Comput Struct 52(1):41–47

    Article  Google Scholar 

  13. Cao Y, Biss D, Perkins JD (1994) Assessment of input-output controllability in the presence of control constraints. Comput Chem Eng 20(4):337–346

    Article  Google Scholar 

  14. Ross R, Swartz C (1997) Inclusion of model uncertainty in a computational framework for dynamic operability assessment. Comput Chem Eng 21:S415–S420

    Article  Google Scholar 

  15. van de Wal M, De Jager B (1997) Selection of sensors and actuators based on a sufficient condition for robust performance. In: Proceedings of European control conference, pp 376–381

  16. De Jager B, Van De Wal M, Kamidi R (1998) Large-scale rigorous actuator and sensor selection. Proc Conf Decis Control 4:4314–4319

    Google Scholar 

  17. Ichikawa A, Ryan EP (1979) Sensor and controller location problems for distributed parameter systems. Automatica 15(3):347–352

    Article  MathSciNet  Google Scholar 

  18. Norris GA, Skelton RE (1989) Selection of dynamic sensors and actuators in the control of linear systems. J Dyn Syst Meas Control 111(3):389–397

    Article  Google Scholar 

  19. Chmielewski DJ, Peng J (2006) Covariance-based hardware selection-part I: globally optimal actuator selection. IEEE Trans Control Syst Technol 14(2):355–361

    Article  Google Scholar 

  20. Boskovic JD, Mehra RK (2002) Control allocation in overactuated aircraft under position and rate limiting. In: Proceedings of the American control conference, pp 791–796

  21. Fossen TI, Johansen TA (2006) A survey of control allocation methods for ships and underwater vehicles. In: Proceedings of mediterranean conference on control and automation, pp 1–6

  22. Johansen TA, Fossen TI (2013) Control allocation: a survey. Automatica 49(5):1087–1103

    Article  MathSciNet  Google Scholar 

  23. Jin J (2005) Modified pseudoinverse redistribution methods for redundant controls allocation. J Guid Control Dyn 28(5):1076–1079

    Article  Google Scholar 

  24. Buffington JM, Enns DF (1996) Lyapunov stability analysis of daisy chain control allocation. J Guid Control Dyn 19(6):1226–1230

    Article  Google Scholar 

  25. Tohidi SS, Khaki Sedigh A, Buzorgnia D (2016) Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space. Int J Robust Nonlinear Control 26(16):3541–3557

    Article  MathSciNet  Google Scholar 

  26. Durham WC (1993) Constrained control allocation. J Guid Control Dyn 16(4):717–725

    Article  Google Scholar 

  27. Naderi M, Khaki Sedigh A, Johansen TA (1993) Constrained control allocation. J Guid Control Dyn 16(4):717–725

    Article  Google Scholar 

  28. Bodson M (2002) Evaluation of optimization methods for control allocation. J Guid Control Dyn 25(4):703–711

    Article  Google Scholar 

  29. Frost SA, Bodson M (2010) Resource balancing control allocation. In: Proceeding of the American control conference, pp 1326–1331

  30. Kim J, Yang I, Lee D (2011) Accommodation of actuator faults using control allocation with modified daisy chaining. In: Proceedings of conference on control, automation and systems, pp 717–720

  31. Pequito S, Kar S, Aguiar AP (2016) Minimum cost input/output design for large-scale linear structural systems. Automatica 68:384–391

    Article  MathSciNet  Google Scholar 

  32. Chang C, Martínez S, Cortés J (2018) Co-optimization of control and actuator selection for cyber-physical systems. IFAC-PapersOnLine 51(23):118–123

    Article  Google Scholar 

  33. Liu Z, et. al. (2017) Minimal input selection for robust control. In: Proceedings of conference on decision and control, pp 2659–2966

  34. Won JS et al (2013) Robust control allocation design for marine vessel. Ocean Eng 63:105–111

    Article  Google Scholar 

  35. Feng C et al (2014) Control allocation algorithm for over-actuated electric vehicles. J Central South Univ 21(10):3705–3712

    Article  Google Scholar 

  36. Kishore WC Arune, Dasgupta S, Ray G, Sen S (2013) Control allocation for an over-actuated satellite launch vehicle. Aerosp Sci Technol 28(1):56–71

    Article  Google Scholar 

  37. Durham WC (1993) Constrained control allocation. J Guid Control Dyn 16(4):717–725

    Article  Google Scholar 

  38. Johansen TA, Fossen TI, Berge SP (2004) Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming. IEEE Trans Control Syst Technol 12(1):211–216

    Article  Google Scholar 

  39. Härkegård O, Glad ST (2001) Control of systems with input nonlinearities and uncertainties: an adaptive approach. In: Proceedings of European control conference, pp 1912–1917

  40. Poonamallee VL, Yurkovich S, Serrani A, Doman DB (2004) A nonlinear programming approach for control allocation. In: Proceedings of the American control conference, pp 1689–1694

  41. Forssell L, Nilsson U (2004) ADMIRE the aero-data model in a research environment. FOI Swedish Defence Research Agency, Stockholm

  42. Harkegaard O (2003) Backstepping and control allocation with applications to flight control. PhD Dissertation, Linkoping University

  43. Zhang Y, Suresh VS, Jiang B, Theilliol D (2007) Reconfigurable control allocation against aircraft control effector failures. In: Proceedings of conference on control applications, pp 1197–1202

  44. Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. Wiley, Hoboken

    Book  Google Scholar 

  45. Bordignon KA (1996) Constrained control allocation for systems with redundant control effectors. PhD Dissertation, Virginia Tech

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, M., Khaki Sedigh, A. Actuator selection for over-actuated systems using the actuator effectiveness index. Int. J. Dynam. Control 8, 991–998 (2020). https://doi.org/10.1007/s40435-020-00610-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00610-5

Keywords

Navigation