Skip to main content
Log in

Robust output feedback predictive controller with adaptive invariant tubes and observer gains

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This work aims to develop a robust output feedback predictive controller that can guarantee the recursive feasibility and the system stability as the invariant tubes and the observer gains can be updated at each sampling time. The recursive feasibility is guaranteed by using the invariant tubes with non-increasing size so the satisfactions of more tightened constraints ensure the satisfactions of less tightened constraints as time proceeds. The system stability is guaranteed by bounding the control error and the estimation error using the invariant tubes that can be updated at each sampling time. The online computational complexity can be reduced as the invariant tubes and the observer gains can be updated at each sampling time. This can be done by computing offline the invariant tubes for the estimation error, the invariant tubes for the control error and the observer gains. The smallest invariant tube containing the estimation error is determined at each sampling time and the corresponding observer gain is chosen as the real-time observer gain. The proposed algorithm can reduce the online computational complexity as compared with the case when the invariant tubes and the observer gains are computed online while the same level of control performance is obtained. In addition, the proposed algorithm can improve the control performance as compared with the case when the invariant tubes and the observer gains are constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The data and material are available upon request.

References

  1. Rawlings JB, Maybe DQ (2009) Model predictive control: theory and design. Nob Hill Publishing, Wisconsin

    Google Scholar 

  2. Chisci L, Rossiter JA, Zappa G (2001) Systems with persistent disturbances: predictive control with restricted constraints. Automatica 37:1019–1028. https://doi.org/10.1016/S0005-1098(01)00051-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Langson W, Chryssochoos I, Raković SV, Mayne DQ (2004) Robust model predictive control using tubes. Automatica 40:125–133. https://doi.org/10.1016/j.automatica.2003.08.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Mayne DQ, Seron MM, Raković SV (2005) Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41:219–224. https://doi.org/10.1016/j.automatica.2004.08.019

    Article  MathSciNet  MATH  Google Scholar 

  5. Limon D, Alvarado I, Alamo T, Camacho EF (2010) Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. J Process Control 20:248–260. https://doi.org/10.1016/j.jprocont.2009.11.007

    Article  Google Scholar 

  6. Gonzalez R, Fiacchini M, Alamo T, Guzman JL, Rodriguez F (2011) Online robust tube-based MPC for time-varying systems: a practical approach. Int J Control 84:1157–1170. https://doi.org/10.1080/00207179.2011.594093

    Article  MathSciNet  MATH  Google Scholar 

  7. Bumroongsri P, Kheawhom S (2016) An off-line formulation of tube-based robust MPC using polyhedral invariant sets. Chem Eng Commun 203:736–745. https://doi.org/10.1080/00986445.2015.1089402

    Article  Google Scholar 

  8. Yadbantung R, Bumroongsri P (2019) Tube-based robust output feedback MPC for constrained LTV systems with applications in chemical processes. Eur J Control 47:11–19. https://doi.org/10.1016/j.ejcon.2018.07.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Hariprasad K, Bhartiya S (2016) A computationally efficient robust tube based MPC for linear switched systems. Nonlinear Anal Hybrid 19:60–76. https://doi.org/10.1016/j.nahs.2015.07.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghasemi MA, Afzalian AA (2017) Robust tube-based MPC for constrained piecewise affine systems with bounded additive disturbances. Nonlinear Anal Hybrid 26:86–100. https://doi.org/10.1016/j.nahs.2017.04.007

    Article  MathSciNet  MATH  Google Scholar 

  11. Brunner FD, Heemels M, Allgöwer F (2016) Robust self-triggered MPC for constrained linear systems: a tube-based approach. Automatica 72:73–83. https://doi.org/10.1016/j.automatica.2016.05.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Cannon M, Buerger J, Kouvaritakis B, Raković S (2011) Robust tubes in nonlinear model predictive control. IEEE Trans Autom Control 56:1942–1947. https://doi.org/10.1109/TAC.2011.2135190

    Article  MathSciNet  MATH  Google Scholar 

  13. Mayne DQ, Kerrigan EC, Wyk EJV, Falugi P (2011) Tube-based robust nonlinear model predictive control. Int J Robust Nonlinear 21:1341–1353. https://doi.org/10.1002/rnc.1758

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu S, Maier C, Chen H, Allgöwer F (2013) Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Syst Control Lett 62:194–200. https://doi.org/10.1016/j.sysconle.2012.11.004

    Article  MathSciNet  MATH  Google Scholar 

  15. Mayne DQ, Raković SV, Findeisen R, Allgöwer F (2006) Robust output feedback model predictive control of constrained linear systems. Automatica 42:1217–1222. https://doi.org/10.1016/j.automatica.2006.03.005

    Article  MathSciNet  MATH  Google Scholar 

  16. Li H, Shi Y (2013) Output feedback predictive control for constrained linear systems with intermittent measurements. Syst Control Lett 62:345–354. https://doi.org/10.1016/j.sysconle.2013.01.003

    Article  MathSciNet  MATH  Google Scholar 

  17. Mayne DQ, Raković SV, Findeisen R, Allgöwer F (2009) Robust output feedback model predictive control of constrained linear systems: time varying case. Automatica 45:2082–2087. https://doi.org/10.1016/j.automatica.2009.05.009

    Article  MathSciNet  MATH  Google Scholar 

  18. Raković SV, Kerrigan EC, Kouramas KI, Mayne DQ (2005) Invariant approximations of the minimal robust positively invariant set. IEEE Trans Autom Control 50:406–410. https://doi.org/10.1109/TAC.2005.843854

    Article  MathSciNet  MATH  Google Scholar 

  19. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36:789–814. https://doi.org/10.1016/S0005-1098(99)00214-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Kvasnica M, Grieder P, Baotić M, Morari M (2004) Multi-parametric toolbox (MPT). Lect Notes Comput Sci 2993:448–462. https://doi.org/10.1007/978-3-540-24743-2_30

    Article  MATH  Google Scholar 

  21. Löfberg J (2012) Automatic robust convex programming. Optim Method Softw 27:115–129. https://doi.org/10.1080/10556788.2010.517532

    Article  MathSciNet  MATH  Google Scholar 

  22. Wan Z, Kothare MV (2002) Robust output feedback model predictive control using off-line linear matrix inequalities. J Process Control 12:763–774. https://doi.org/10.1016/S0959-1524(02)00003-3

    Article  Google Scholar 

  23. Marlin TE (2000) Process control: designing processes and control systems for dynamic performance. McGraw Hill, New York

    Google Scholar 

  24. Xu Y, Zhang G, Li N, Zhang J, Li S, Wang L (2019) Data-driven performance monitoring for model predictive control using a mahalanobis distance based overall index. Asian J Control 21:891–907. https://doi.org/10.1002/asjc.1782

    Article  MATH  Google Scholar 

  25. Bumroongsri P (2015) Tube-based robust MPC for linear time-varying systems with bounded disturbances. Int J Control Autom 13:620–625. https://doi.org/10.1007/s12555-014-0182-5

    Article  Google Scholar 

  26. Bonzanini AD, Santos TLM, Mesbah A (2019) Tube-based stochastic nonlinear model predictive control: a comparative study on constraint tightening. IFAC PapersOnLine 52:598–603. https://doi.org/10.1016/j.ifacol.2019.06.128

    Article  Google Scholar 

Download references

Acknowledgements

This research project is supported by Mahidol University and Thailand Research Fund (MRG6180035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornchai Bumroongsri.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest.

Code availability

The simulation code is available upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilaivannaporn, W., Boonsith, S., Pornputtapitak, W. et al. Robust output feedback predictive controller with adaptive invariant tubes and observer gains. Int. J. Dynam. Control 9, 755–765 (2021). https://doi.org/10.1007/s40435-020-00676-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00676-1

Keywords

Navigation