Skip to main content
Log in

Qualitative analysis and chaos control in a density-dependent host–parasitoid system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

We study the comprehensive dynamics of a density-dependent host–parasitoid system with the Hassell growth function for the host population. Particularly, we investigate the dynamical properties related to boundedness, local asymptotic stability of boundary equilibrium, existence and uniqueness of positive equilibrium point and global asymptotic stability of the positive equilibrium point of this modified host–parasitoid model. Moreover, it is also proved both populations endure period-doubling bifurcation and Neimark–Sacker bifurcation at positive steady-state with suitable choice of parametric values. OGY method is implemented in order to controlling chaos in host–parasitoid model. Finally, numerical simulations are provided to illustrate theoretical results. These results of numerical simulations demonstrate chaotic long-term behavior over a broad range of parameters. The computation of the maximum Lyapunov exponents confirm the presence of chaotic behavior in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agarwal RP (2000) Difference equations and inequalities: theory, method and applications. Marcel Dekker, New York

    Google Scholar 

  2. Freedman HI (1980) Deterministic mathematical models in population ecology. Marcel Dekker, NewYork

    MATH  Google Scholar 

  3. Goh BS (1980) Management and analysis of biological populations. Elsevier, Amsterdam

    Google Scholar 

  4. Murry JD (1989) Mathematical biology. Springer, New York

    Book  Google Scholar 

  5. Allen Linda JS (2007) An introduction to mathematical biology. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. Brauer F, Castillo-Chavez C (2000) Mathematical models in population biology and epidemiology. Springer, New York

    MATH  Google Scholar 

  7. Edelstein-Keshet L (1988) Mathematical models in biology. McGraw-Hill, New York

    MATH  Google Scholar 

  8. Elaydi S (2005) An introduction to difference equations, 3rd edn. Springer, New York

    MATH  Google Scholar 

  9. Sedaghat H (2003) Nonlinear difference equations: theory with applications to social science models. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  10. Taylor AD (1988) Parasitiod competition and the dynamics of host–parasitiod models. Am Nat 132(3):417–436

    Article  Google Scholar 

  11. Thompson WR (1929) On the effect of random oviposition on the action of entomophagous parasites as agents of natural control. Parasitology 21:180–188

    Article  Google Scholar 

  12. Bailey VA, Nicholson AJ (1935) The balance of animal populations. Proc. Zool. Soc. Lond. 3:551–598

    Google Scholar 

  13. Hassell MP, Varley GC (1969) New inductive population model for insect parasites and its bearing on biological control. Nature 223:1133–1137

    Article  Google Scholar 

  14. Beddington JR, Free CA, Lawton JH (1975) Dynamic complexity in predator-prey models framed in difference equations. Nature 225:58–60

    Article  Google Scholar 

  15. May RM, Hassell MP, Anderson RM, Tonkyn DW (1981) Density dependence in host–parasitoid models. J. Anim. Ecol. 50:855–865

    Article  MathSciNet  Google Scholar 

  16. Wang YH, Gutierrez AP (1980) An assessment of the use of stability analyses in population ecology. J. Anim. Ecol. 49(2):435–452

    Article  MathSciNet  Google Scholar 

  17. May RM (1978) Host–parasitoid systems in patchy environments: a phenomenological model. J. Anim. Ecol. 47:833–844

    Article  Google Scholar 

  18. May RM (1981) Density dependence in host–parasitiod models. J. Anim. Ecol. 50:855–865

    Article  Google Scholar 

  19. Schreiber SJ (2006) Host–parasitoid dynamics of a generalized Thompson model. J. Math. Biol. 52:719–732

    Article  MathSciNet  MATH  Google Scholar 

  20. Hassell MP (1975) Density-dependence in single-species populations. J. Anim. Ecol. 44:283–295

    Article  Google Scholar 

  21. Din Q (2017) Dynamics of a host–pathogen model with constant mortality rate. Nonlinear Anal. Model. Control 22(2):173–187

    MathSciNet  Google Scholar 

  22. Din Q (2014) Global stability of a population model. Chaos Soliton Fract. 59:119–128

    Article  MathSciNet  MATH  Google Scholar 

  23. Din Q (2015) Global behavior of a plant–herbivore model. Adv. Differ. Equ. 2015:119

    Article  MathSciNet  Google Scholar 

  24. Din Q (2016) Global behavior of a host–parasitoid model under the constant refuge effect. Appl. Math. Model. 40(4):2815–2826

    Article  MathSciNet  Google Scholar 

  25. Balreira EC, Elaydi S, Luís R (2014) Local stability implies global stability for the planar Ricker competition model. Discret. Contin. Dyn. Syst. Ser. B 19(2):323–351

    Article  MathSciNet  MATH  Google Scholar 

  26. Din Q, Khan MA, Saeed U (2016) Qualitative behaviour of generalised Beddington model. Z. Naturforsch. A 71(2):145–155

    Article  Google Scholar 

  27. Din Q (2016) Global stability of Beddington model. Qual. Theor. Dyn. Syst. doi:10.1007/s12346-016-0197-9

  28. Din Q (2016) Global stability and Neimark–Sacker bifurcation of a host–parasitoid model. Int. J. Syst. Sci. doi:10.1080/00207721.2016.1244308

  29. Grove EA, Ladas G (2004) Periodicities in nonlinear difference equations. Chapman and Hall/CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  30. Din Q (2017) Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. doi:10.1080/10236198.2016.1277213

  31. Din Q, Gümüş ÖA, Khalil H (2017) Neimark–Sacker bifurcation and chaotic behaviour of a modified host–parasitoid model. Z. Naturforsch. A 72(1):25–37

    Article  Google Scholar 

  32. Din Q (2017) Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49:113–134

    Article  MathSciNet  Google Scholar 

  33. Elabbasy EM, Elsadany AA, Zhang Y (2014) Bifurcation analysis and chaos in a discrete reduced Lorenz system. Appl. Math. Comput. 228:184–194

    MathSciNet  MATH  Google Scholar 

  34. He Z, Lai X (2011) Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. RWA 12:403–417

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu X, Xiao D (2007) Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Soliton Fract. 32:80–94

    Article  MathSciNet  MATH  Google Scholar 

  36. Jing Z, Yang J (2006) Bifurcation and chaos in discrete-time predator–prey system. Chaos Soliton Fract. 27:259–277

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun H, Cao H (2007) Bifurcations and chaos of a delayed ecological model. Chaos Solitons Fract. 4:1383–1393

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang Y, Zhang Q, Zhao L, Yang C (2007) Dynamical behaviors and chaos control in a discrete functional response model. Chaos Solitons Fract. 4:1318–1327

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuznetsov YA (1997) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  40. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Book  MATH  Google Scholar 

  41. Robinson C (1999) Dynamical systems: stability, symbolic dynamics and chaos. Boca Raton, New York

    MATH  Google Scholar 

  42. Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York

    MATH  Google Scholar 

  43. Wan YH (1978) Computation of the stability condition for the Hopf bifurcation of diffeomorphism on \(R^2\). SIAM. J. Appl. Math. 34:167–175

    Article  MathSciNet  MATH  Google Scholar 

  44. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys. Rev. Lett. 64(11):1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  45. Lynch S (2007) Dynamical systems with applications using mathematica. Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Q. Qualitative analysis and chaos control in a density-dependent host–parasitoid system. Int. J. Dynam. Control 6, 778–798 (2018). https://doi.org/10.1007/s40435-017-0341-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0341-7

Keywords

Mathematics Subject Classification

Navigation