Skip to main content
Log in

Host-parasitoid dynamics of a generalized Thompson model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A discrete-time host-parasitoid model including host-density dependence and a generalized Thompson escape function is analyzed. This model assumes that parasitoids are egg-limited but not search-limited, and is proven to exhibit five types of dynamics: host failure in which the host goes extinct in the parasitoid's presence or absence, unconditional parasitoid failure in which the parasitoid always goes extinct while the host persists, conditional parasitoid failure in the host and the parasitoid go extinct or coexist depending on the initial host-parasitoid ratio, parasitoid driven extinction in which the parasitoid invariably drives the host to extinction, and coexistence in which the host and parasitoid coexist about a global attractor. The latter two dynamics only occur when the parasitoid's maximal rate of growth exceeds the host's maximal rate of growth. Moreover, coexistence requires parasitism events to be sufficiently aggregated. Small additive noise is proven to alter the dynamical outcomes in two ways. The addition of noise to parasitoid driven extinction results in random outbreaks of the host and parasitoid with varying intensity. Additive noise converts conditional parasitoid failure to unconditional parasitoid failure. Implications for classical biological control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arditi, R., Berryman, A.A.: The biological control paradox. Trends in Ecology and Evolution 6, 32 (1991)

    Article  Google Scholar 

  2. Arditi, R., Ginsberg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theoretical Biol. 139, 311–326 (1989)

    Google Scholar 

  3. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamic complexity in predator-prey models framed in difference equations. Nature 225, 58–60 (1975)

    Article  Google Scholar 

  4. Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43 (3), 221–246 (2001) MR 2002i:92019

    Article  MathSciNet  Google Scholar 

  5. Comins, H.N., Wellings, P.W.: Density-related parasitoid sex-ratio: influence on host-parasitoid dynamics. J. Anim. Ecol. 54, 583–594 (1985)

    Google Scholar 

  6. de Melo, W., van Strien, S.: One dimensional dynamics. Springer-Verlag, Berlin, 1993

  7. Durrett, R.: Probability: theory and examples. Duxbury Press, Belmont, CA, 1996. MR 98m:60001

  8. Getz, W.M.: Population dynamics: a per-capita resource approach. J. Theoret. Biol. 108, 623–643 (1984)

    MathSciNet  Google Scholar 

  9. Getz, W.M.: A hypothesis regarding the abruptness of density dependence and the growth rate of populations. Ecology 77, 2014–2026 (1996)

    Article  Google Scholar 

  10. Getz, W.M., Mills, N.J.: Host-parasitoid coexistence and egg-limited encounter rates. Am. Nat. 148, 333–347 (1996)

    Article  Google Scholar 

  11. Gutierrez, A.P.: The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of nicholson's blowfies as an example 73, 1552–1563 (1992)

  12. Gutierrez, A.P., Mills, N.J., Schreiber, S.J., Ellis, C.K.: A phsysiologically based tritrophic perspective on bottom-up top-down regulation of populations. Ecology 75, 2227–2242 (1994)

    Article  Google Scholar 

  13. Hassell, M.P.: The dynamics of arthropod predator-prey systems. Monographs in Population Biology, vol. 13, Princeton University Press, Princeton, N.J., 1978. MR 80d:92026

  14. Hastings, A.

  15. Hochberg, M.E., Holt, R.D.: Refuge evolution and the population dynamics of coupled host-parasitoid associations. Evolutionary Ecology 9, 633–661 (1995)

    Article  Google Scholar 

  16. Hsu, S.-B., Hwang, T.-W., Kuang, Y.: Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system. J. Math. Biol. 42 (6), 489–506 (2001). MR 2002f:92020

    Article  Google Scholar 

  17. Hsu, S.-B., Li, M.-C., Liu, W., Malkin, M.: Heteroclinic foliation, global oscillations for the Nicholson-Bailey model and delay of stability loss. Discrete Contin. Dyn. Syst. 9 (6), 1465–1492 (2003). MR 2 017 677

    Google Scholar 

  18. Kifer, Y.: Random perturbations of dynamical systems. Progress in Probability and Statistics, vol. 16, Birkhäuser Boston Inc., Boston, MA, 1988. MR 91e:58159

  19. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36 (4), 389–406 (1998). MR 99i:92022

    Article  MathSciNet  Google Scholar 

  20. Lane, S.D., Mills, N.J., Getz, W.M.: The effects of parasitoid fecundity and host taxon on the biological control of insect pests: the relationship between theory and data. Ecological Entomology 24, 181–190 (1999)

    Article  Google Scholar 

  21. Luck, R.F.: Evaluation of natural enemies for biological control: a behavior approach. Trends in Ecology and Evolution

  22. May, R.M.: Host-parasitoid systems in patch environments: a phenomenological model. J. Anim. Ecol. 47, 833–843 (1978)

    Google Scholar 

  23. May, R.M., Hassell, M.P., Anderson, R.M., Tonkyn, D.W.: Density dependence in host-parasitoid models. J. Animal Ecol. 50, 855–865 (1981)

    MathSciNet  Google Scholar 

  24. Nicholson, A.J., Bailey, V.A.: The balance of animal populations. Proc. Zool. Soc. Lond. 1935, pp. 551–598

  25. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board. Can. 11, 559–623 (1954)

    Google Scholar 

  26. Rogers, D.J.: Random search and insect population models. J. Animal Ecol. 41, 369–383 (1972)

    Google Scholar 

  27. Ruelle, D.: Small random perturbations of dynamical systems and the definition of attractors. Commum. Math. Phys. 82 (1), 137–151 (1981/82). MR 83c:58051

    Article  MathSciNet  Google Scholar 

  28. Schreiber, S.J., Fox, L.R., Getz, W.M.: Coevolution of contrary choices in host-parasitoid systems. Am. Nat., 2001, pp. 637–648

  29. Schreiber, S.J., Fox, L.R., Getz, W.M.: Parasitoid sex allocation affects coevolution of patch selection in host-parasitoid systems. Evolutionary Ecology Research 4, 701–718 (2002)

    Google Scholar 

  30. Thompson, W.R. La theory mathematique de l'action des parasites entomophages et le facteur du hassard. Annales Faculte des Sciences de Marseille 2, 69–89 (1924)

    Google Scholar 

  31. van Baalen, M., Sabelis, M.W.: Coevolution of patch selection strategies of predator and prey and the consequences for ecological stability. Am. Nat. 142, 646–670 (1993)

    Article  Google Scholar 

  32. Wang, Y.H., Gutierrez, A.P.: An assessment of the use of stability analyses in population ecology. J. Animal Ecology 49 (2), 435–452 (1980). MR 82g:92057

    Google Scholar 

  33. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 43 (3), 268–290 (2001). MR 2002i:92025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian J. Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, S. Host-parasitoid dynamics of a generalized Thompson model. J. Math. Biol. 52, 719–732 (2006). https://doi.org/10.1007/s00285-005-0346-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0346-2

Keywords

Navigation