Skip to main content
Log in

Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Lagrange JL (1788) Mecanique Analytique, vol 2. Albert Balnchard, Paris, 1965

  2. Poincare H (1899) Methodes Nouvelles de la Mecanique Celeste, vol 3. Gauthier-Villars, Paris

    MATH  Google Scholar 

  3. van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev 1(701–710):754–762

    Google Scholar 

  4. Krylov NM, Bogolyubov NN (1935) Methodes approchees de la mecanique non-lineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Academie des Sciences d’Ukraine, Kiev (in French)

    Google Scholar 

  5. Hayashi C (1964) Nonlinear oscillations in physical systems. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  6. Nayfeh AH (1973) Perturbation methods. Wiley, New York

    MATH  Google Scholar 

  7. Holmes PJ, Rand DA (1976) Bifurcations of Duffing’s equation; an application of catastrophe theory. Q Appl Math 44:237–253

    MATH  Google Scholar 

  8. Nayfeh AH, Mook DT (1979) Nonlinear oscillation. Wiley, New York

    MATH  Google Scholar 

  9. Ueda Y (1980) Explosion of strange attractors exhibited by the Duffing equations. Ann N Y Acad Sci 357:422–434

    Article  Google Scholar 

  10. Garica-Margallo JD, Bejarano JD (1987) A generalization of the method of harmonic balance. J Sound Vib 116:591–595

    Article  MathSciNet  MATH  Google Scholar 

  11. Coppola VT, Rand RH (1990) Averaging using elliptic functions: approximation of limit cycle. Acta Mech 81:125–142

    Article  MathSciNet  MATH  Google Scholar 

  12. Mathieu E (1873) Memoire sur le mouvement vibra-toire d’une membrance deforme elliptique. Journal de mathematiques pures et appliquees 2 serie, tome 13:137–203 (in French)

    Google Scholar 

  13. Whittaker ET (1913) General solution of Mathieu’s equation. Proc Edinb Amath Soc 32:75–80

    Article  MATH  Google Scholar 

  14. Sevin E (1961) On the parametric excitation of pendulum-type vibration absorber. J Appl Mech 28:330–334

    Article  MATH  Google Scholar 

  15. Tso WK, Caughey TK (1965) Parametric excitation of a nonlinear system. ASME J Appl Mech 32:899–902

    Article  MathSciNet  MATH  Google Scholar 

  16. Mond M, Cederbaum G, Khan PB, Zarmi Y (1993) Stability analysis of non-linear Mathieu equation. J Sound Vib 167:77–89

    Article  MATH  Google Scholar 

  17. Luo ACJ, Han RPS (1997) A quantitative stability and bifurcation analysis of a generalized Duffing oscillator with strong nonlinearity. J Sound Vib 334B:447–459

    MATH  Google Scholar 

  18. Luo ACJ, Han RPS (1999) Analytical prediction of chaos in a nonlinear rod. J Sound Vib 227(3):523–544

    Article  Google Scholar 

  19. Luo ACJ (2004) Chaotic notion in the resonant separatrix bands of a Mathieu–Duffing oscillator with twin-well potential. J Sound Vib 273:653–666

    Article  Google Scholar 

  20. Peng ZK, Lang ZQ, Billings SA, Tomlinson GR (2008) Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J Sound Vib 311:56–73

    Article  Google Scholar 

  21. Luo ACJ, Huang JZ (2012) Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J Sound Vib 18:1661–1871

    MathSciNet  Google Scholar 

  22. Luo ACJ (2012) Continuous dynamical systems. HEP/L&H Scientific, Beijing/Glen Carbon

    MATH  Google Scholar 

  23. Luo ACJ, Yu B (2013) Period-m motions and bifurcation trees in a periodically excited, quadratic nonlinear oscillator. Discontin Nonlinearity Complex 2:263–288

    Article  MATH  Google Scholar 

  24. Luo ACJ, Laken AB (2013) Analytical solutions for period-m motions in a periodically forced van der Pol oscillator. In J Dyn Control 1(2):99–115

    Article  Google Scholar 

  25. Luo ACJ, O’Connor D (2013) On periodic motions in a parametric hardening Duffing oscillator. Int J Bifur Chaos 24:No. 1430004

  26. Luo ACJ (2015) Periodic flows to Chaos based on discrete implicit mappings of continuous nonlinear systems. Int J Bifur Chaos 25(3):No. 1550044

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, A.C.J., Ma, H. Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator. Int. J. Dynam. Control 6, 425–458 (2018). https://doi.org/10.1007/s40435-017-0314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0314-x

Keywords

Navigation