Skip to main content

Advertisement

Log in

Mechanical analysis of a PEEK titanium alloy macro-composite hip stem by finite element method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, numerical modeling and analysis of a HA-coated PEEK/Ti macro-composite hip stem is presented. The macro-composite hip stem consists of a titanium core in the center and a PEEK layer around it and a thin HA coating on the surface. The composite stem was designed and implanted in a standardized human femur bone model in SolidWorks software. The intact and postoperative femur bones were loaded like as in the single-leg stance of the walking gait and the effect of PEEK layer thickness on the internal stresses was analyzed in ANSYS software. Results were compared with an all-metallic stem model. Also, the fatigue strength of the stem and stresses occurring in the implant/coating interface were analyzed. With the composite stem, more homogeneous load distribution could be achieved, thus the stress-shielding effect was considerably reduced. Composite implants with 2 and 3 mm of PEEK layer provided sufficient fatigue strength in accordance with ASTM F2996-13 and ISO 7206-4:2010 standards. Maximum stresses at the coating/implant interface were well below the plasma-sprayed HA coatings strengths on PEEK implants. It is thought that the designed composite model may be an alternative to the standard HA-coated Ti alloy hip implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akhavan S, Matthiesen MM, Schulte L, Penoyar T, Kraay MJ, Rimnac CM, Goldberg VM (2006) Clinical and histologic results related to a low-modulus composite total hip replacement stem. J Bone Jt Surg: Ser A 88(6):1308–1314. https://doi.org/10.2106/JBJS.E.00316

    Article  Google Scholar 

  2. Alm JJ, Mäkinen TJ, Lankinen P, Moritz N, Vahlberg T, Aro HT (2009) Female patients with low systemic BMD are prone to bone loss in Gruen zone 7 after cementless total hip arthroplasty: a 2-year DXA follow-up of 39 patients. Acta Orthop 80(5):531–537

    Article  Google Scholar 

  3. Bitsakos C, Kerner J, Fisher I, Amis AA (2005) The effect of muscle loading on the simulation of bone remodelling in the proximal femur. J Biomech 38(1):133–139. https://doi.org/10.1016/J.JBIOMECH.2004.03.005

    Article  Google Scholar 

  4. Caouette C, Yahia L, Bureau MN (2011) Reduced stress shielding with limited micromotions using a carbon fibre composite biomimetic hip stem: a finite element model. Proc Inst Mech Eng Part H J Eng Med 225(9):907–919. https://doi.org/10.1177/0954411911412465

    Article  Google Scholar 

  5. Cetin ME, Sofuoglu H (2018) A statistical approach to explore cemented total hip reconstruction performance. Australas Phys Eng Sci Med 41(1):177–188. https://doi.org/10.1007/s13246-018-0627-x

    Article  Google Scholar 

  6. Charnley J (1961) Arthroplasty of the hip: a new operation. Lancet 277(7187):1129–1132. https://doi.org/10.1016/S0140-6736(61)92063-3

    Article  Google Scholar 

  7. Chen DW, Lin C-L, Hu C-C, Tsai M-F, Lee MS (2013) Biomechanical consideration of total hip arthroplasty following failed fixation of femoral intertrochanteric fractures: a finite element analysis. Med Eng Phys 35(5):569–575. https://doi.org/10.1016/j.medengphy.2012.06.023

    Article  Google Scholar 

  8. Cilla M, Checa S, Duda GN (2017) Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty. J Orthop Res Off Publ Orthop Res Soc 35(11):2534–2544. https://doi.org/10.1002/jor.23540

    Article  Google Scholar 

  9. Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials. https://doi.org/10.1016/j.biomaterials.2007.07.049

    Article  Google Scholar 

  10. Delaunay C, Hamadouche M, Girard J, Duhamel A (2013) What are the causes for failures of primary hip arthroplasties in France? Clin Orthop Relat Res 471(12):3863–3869. https://doi.org/10.1007/s11999-013-2935-5

    Article  Google Scholar 

  11. Eidel B, Gote A, Ohrndorf A, Christ H-J (2018) How can a short stem hip implant preserve the natural, pre-surgery force flow? A finite element analysis on a collar cortex compression concept (CO(4)). Med Eng Phys. https://doi.org/10.1016/j.medengphy.2018.04.016

    Article  Google Scholar 

  12. Ercan A, Sokkar SM, Schmid G, Filler TJ, Abdelkafy A, Jerosch J (2016) Periprosthetic bone density changes after MiniHip(TM) cementless femoral short stem: one-year results of dual-energy X-ray absorptiometry study. SICOT-J 2:40. https://doi.org/10.1051/sicotj/2016033

    Article  Google Scholar 

  13. Ferguson RJ, Palmer AJ, Taylor A, Porter ML, Malchau H, Glyn-Jones S (2018) Hip replacement. Lancet 392(10158):1662–1671. https://doi.org/10.1016/S0140-6736(18)31777-X

    Article  Google Scholar 

  14. Glassman A, Crowninshield R, Schenck R, Herberts P (2001) A Low Stiffness Composite Biologically Fixed Prosthesis. Clin Orthop Relat Res 393:128–136. https://doi.org/10.1097/00003086-200112000-00015

    Article  Google Scholar 

  15. Gruen TA, Mcneice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  16. Guner AT, Meran C (2019) A review on plasma sprayed titanium and hydroxyapatite coatings on polyetheretherketone implants. Int J Surf Sci Eng 13(4):237–262. https://doi.org/10.1504/IJSURFSE.2019.103923

    Article  Google Scholar 

  17. Heller M, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas N, Duda G (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34(7):883–893. https://doi.org/10.1016/S0021-9290(01)00039-2

    Article  Google Scholar 

  18. Herrera A, Panisello JJ, Ibarz E, Cegoñino J, Puértolas JA, Gracia L (2007) Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation. J Biomech. https://doi.org/10.1016/j.jbiomech.2007.06.008

    Article  Google Scholar 

  19. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20(11–12):1135–1150. https://doi.org/10.1016/0021-9290(87)90030-3

    Article  Google Scholar 

  20. Kaddick C, Stur S, Hipp E (1997) Mechanical simulation of composite hip stems. Med Eng Phys. https://doi.org/10.1016/S1350-4533(97)00008-8

    Article  Google Scholar 

  21. Kärrholm J, Anderberg C, Snorrason F, Thanner J, Langeland N, Malchau H, Herberts P (2002) Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry. J Bone Joint Surg Am 84(9):1651–1658. https://doi.org/10.2106/00004623-200209000-00020

    Article  Google Scholar 

  22. Katz Y, Lubovsky O, Yosibash Z (2018) Patient-specific finite element analysis of femurs with cemented hip implants. Clin Biomech 58:74–89. https://doi.org/10.1016/j.clinbiomech.2018.06.012

    Article  Google Scholar 

  23. Kerner J, Huiskes R, Van Lenthe GH, Weinans H, Van Rietbergen B, Engh CA, Amis AA (1999) Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. J Biomech. https://doi.org/10.1016/S0021-9290(99)00041-X

    Article  Google Scholar 

  24. Kocak S, Sekercioglu T (2019) Experimental and numerical static failure analyses of total hip replacement interfaces. Proc Inst Mech Eng Part H J Eng Med 233(11):1183–1195. https://doi.org/10.1177/0954411919877305

    Article  Google Scholar 

  25. Kohnke P. 2013. ANSYS mechanical APDL theory reference. 15.0. Canonsburg, PA, USA: ANSYS Inc.

  26. Kuzyk PR, Schemitsch EH (2011) The basic science of peri-implant bone healing. Indian J Orthop 45(2):108–115. https://doi.org/10.4103/0019-5413.77129

    Article  Google Scholar 

  27. Martini F, Sell S, Kremling E, Küsswetter W (1996) Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stems. Int Orthop 20(4):218–221. https://doi.org/10.1007/s002640050067

    Article  Google Scholar 

  28. Meena VK, Kumar M, Pundir A, Singh S, Goni V, Kalra P, Sinha RK (2016) Musculoskeletal-based finite element analysis of femur after total hip replacement. Proc Inst Mech Eng Part H J Eng Med 230(6):553–560. https://doi.org/10.1177/0954411916638381

    Article  Google Scholar 

  29. Niinimaki T, Jalovaara P (1995) Bone loss from the proximal femur after arthroplasty with an isoelastic femoral stem: BMD measurements in 25 patients after 9 years. Acta Orthop Scand 66(4):347–351. https://doi.org/10.3109/17453679508995559

    Article  Google Scholar 

  30. Rivière C, Grappiolo G, Engh CA, Vidalain J-P, Chen A-F, Boehler N, Matta J, Vendittoli P-A (2018) Long-term bone remodelling around ‘legendary’ cementless femoral stems. EFORT Open Rev 3(2):45–57. https://doi.org/10.1302/2058-5241.3.170024

    Article  Google Scholar 

  31. Sas A, Pellikaan P, Kolk S, Marty P, Scheerlinck T, Van Lenthe GH (2019) Effect of anatomical variability on stress-shielding induced by short calcar-guided stems: automated finite element analysis of 90 femora. J Orthop Res 37(3):681–688. https://doi.org/10.1002/jor.24240

    Article  Google Scholar 

  32. Sköldenberg OG, Bodén HSG, Salemyr MOF, Ahl TE, Adolphson PY (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2–7 years. Acta Orthop 77(3):386–392

    Article  Google Scholar 

  33. Sofuoglu H, Cetin ME (2015) An investigation on mechanical failure of hip joint using finite element method. Biomed Tech 60(6):603–616. https://doi.org/10.1515/bmt-2014-0173

    Article  Google Scholar 

  34. Stolk J, Verdonschot N, Huiskes R (2001) Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech 34(7):917–926. https://doi.org/10.1016/s0021-9290(00)00225-6

    Article  Google Scholar 

  35. Sumner DR, Galante JO (1992) Determinants of stress shielding. Clin Orthop Relat Res 274:203–212

    Article  Google Scholar 

  36. Tatani I, Panagopoulos A, Diamantakos I, Sakellaropoulos G, Pantelakis S, Megas P (2019) Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis. Trials 20(1):359. https://doi.org/10.1186/s13063-019-3445-x

    Article  Google Scholar 

  37. Trebse R, Milosev I, Kovac S, Mikek M, Pisot V (2005) Poor results from the isoelastic total hip replacement. Acta Orthop 76(2):169–176. https://doi.org/10.1080/00016470510030535

    Article  Google Scholar 

  38. Viceconti M, Ansaloni M, Baleani M, Toni A (2003) The muscle standardized femur: a step forward in the replication of numerical studies in biomechanics. Proc Inst Mech Eng Part H J Eng Med 217(2):105–110. https://doi.org/10.1243/09544110360579312

    Article  Google Scholar 

  39. Viceconti M, Casali M, Massari B, Cristofolini L, Bassini S, Toni A (1996) The “standardized femur program” proposal for a reference geometry to be used for the creation of finite element models of the femur. J Biomech 29(9):1241. https://doi.org/10.1016/0021-9290(95)00164-6

    Article  Google Scholar 

  40. Wieding J, Souffrant R, Mittelmeier W, Bader R (2013) Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions. Med Eng Phys 35(4):422–432. https://doi.org/10.1016/j.medengphy.2012.06.006

    Article  Google Scholar 

  41. Wypych G (2016) PEEK polyetheretherketone. In: Wypych G (ed) Handb Polym, 2nd edn. ChemTec Publishing, Ontario, pp 366–370

    Chapter  Google Scholar 

  42. Yang Y-C, Chang E (2005) Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy. Surf Coatings Technol 190(1):122–131. https://doi.org/10.1016/J.SURFCOAT.2004.02.038

    Article  Google Scholar 

Download references

Acknowledgements

The authors report that there are no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tekin Guner.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guner, A.T., Kocak, S. & Meran, C. Mechanical analysis of a PEEK titanium alloy macro-composite hip stem by finite element method. J Braz. Soc. Mech. Sci. Eng. 46, 338 (2024). https://doi.org/10.1007/s40430-024-04939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04939-2

Keywords

Navigation