Skip to main content
Log in

Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient’s bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Froimson MI, Garino J, Machenaud A, Vidalain J (2007) Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. J Arthroplast 22:1–7

    Article  Google Scholar 

  2. Kayabasi O, Ekici B (2008) Probabilistic design of a newly designed cemented hip prosthesis using finite element method. Mater Des 29:963–971

    Article  CAS  Google Scholar 

  3. Pal B, Gupta S, New AM (2010) Design considerations for ceramic resurfaced femoral head: effect of interface characteristics on failure mechanisms. Comput Methods Biomech Biomed Eng 13:143–155

    Article  Google Scholar 

  4. Gross S, Abel E (2001) A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech 34:995–1003

    Article  PubMed  CAS  Google Scholar 

  5. Wan Z, Dorr LD, Woodsome T, Ranawat A, Song M (1999) Effect of stem stiffness and bone stiffness on bone remodeling in cemented total hip replacement. J Arthroplast 14:149–158

    Article  CAS  Google Scholar 

  6. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention-a review. Recent Pat Corros Sci 2:40–54

    Article  CAS  Google Scholar 

  7. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Tech 61:1189–1224

    Article  CAS  Google Scholar 

  8. Yoon S-W, Kim Y-H, Lee J-W, Kim H-B, Murakami R-I (2013) Tribological properties of carbon/PEEK composites. Science 14:98–106

    Google Scholar 

  9. Chang FK, Perez JL, Davidson JA (1990) Stiffness and strength tailoring of a hip prosthesis made of advanced composite materials. J Biomed Mater Res 24:873–899

    Article  PubMed  CAS  Google Scholar 

  10. Cilingir A, Ucar V, Kazan R (2007) Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint. Trends Biomater Artif Organs 21:63–72

    Google Scholar 

  11. Katoozian H, Davy DT, Arshi A, Saadati U (2001) Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites. Med Eng Phys 23:505–511

    Article  Google Scholar 

  12. Utzschneider S, Becker F, Grupp TM, Sievers B, Paulus A, Gottschalk O et al (2010) Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater 6:4296–4304

    Article  PubMed  CAS  Google Scholar 

  13. Scholz M-S, Blanchfield J, Bloom L, Coburn B, Elkington M, Fuller J et al (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Tech 71:1791–1803

    Article  CAS  Google Scholar 

  14. Boudeau N, Liksonov D, Barriere T, Maslov L, Gelin J-C (2012) Composite based on polyetheretherketone reinforced with carbon fibres, an alternative to conventional materials for femoral implant: manufacturing process and resulting structural behaviour. Mater Des 40:148–156

    Article  CAS  Google Scholar 

  15. Oshkour A, Osman NA, Bayat M, Afshar R, Berto F (2014) Three-dimensional finite element analyses of functionally graded femoral prostheses with different geometrical configurations. Mater Des 56:998–1008

    Article  CAS  Google Scholar 

  16. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M (2013) Carbon fiber reinforced PEEK Optima-a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 17:221–228

    Article  PubMed  CAS  Google Scholar 

  17. Skinner HB (1988) Composite technology for total hip arthroplasty. Clin Orthop Relat Res 235:224–236

    PubMed  CAS  Google Scholar 

  18. Davidson J (1987) The challenge and opportunity for composites in structural orthopaedic applications. Challenge 9:151–161

    CAS  Google Scholar 

  19. Magee FP, Weinstein AM, Longo JA, Koeneman JB, Yapp RA (1988) A canine composite femoral stem: an in vivo study. Clin Orthop Relat Res 235:237–252

    PubMed  Google Scholar 

  20. Keaveny TM, Bartel DL (1995) Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement. J Bone Joint Surg Am 77:911–923

    PubMed  CAS  Google Scholar 

  21. Karimi A, Navidbakhsh M (2014) Measurement of the nonlinear mechanical properties of a poly (vinyl alcohol) sponge under longitudinal and circumferential loading. J Appl Polym Sci 131

  22. Karimi A, Navidbakhsh M, Haghi AM (2014) An experimental study on the structural and mechanical properties of polyvinyl alcohol sponge using different stress-strain definitions. Adv Polym Tech 33

  23. Wenz L, Merritt K, Brown S, Moet A, Steffee A (1990) In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207–215

    Article  PubMed  CAS  Google Scholar 

  24. Puleo D, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20:2311–2321

    Article  PubMed  CAS  Google Scholar 

  25. Akay M, Aslan N (1996) Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis. J Biomed Mater Res 31:167–182

    Article  PubMed  CAS  Google Scholar 

  26. Kwarteng KB, Stark C (1990) Carbon fiber reinforced PEEK (APC-2/AS-4) composites for orthopaedic implants. Sampe Q 22:10–14

    CAS  Google Scholar 

  27. Ryoo S, Kim K (2001) A study on friction and wear behavior of carbon fiber reinforced polyetheretherketone. Korean Soc Mech Eng 25:930

    Google Scholar 

  28. Elhamian SMM, Alizadeh M, Shokrieh MM, Karimi A (2015) A depth dependent transversely isotropic micromechanic model of articular cartilage. J Mater Sci Mater Med 26:1–10

    Article  CAS  Google Scholar 

  29. Elhamian MM, Karami H, Alizadeh M, Shokrieh MM, Karimi A (2014) Model for analyzing the mechanical behavior of articular cartilage under creep indentation test. J Appl Phys 116:184702–184710

    Article  Google Scholar 

  30. Karimi A, Navidbakhsh M, Shojaei A (2015) A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Tissue Cell 47:152–158

    Article  PubMed  Google Scholar 

  31. Shahmohammadi M, Shirazi HA, Karimi A, Navidbakhsh M (2014) Finite element simulation of an artificial intervertebral disk using fiber reinforced laminated composite model. Tissue Cell 46:299–303

    Article  PubMed  CAS  Google Scholar 

  32. Williams PL (1989) Gray’s anatomy. Churchill livingstone, Edinburgh

    Google Scholar 

  33. Katzer A, Marquardt H, Westendorf J, Wening J, Von Foerster G (2002) Polyetheretherketone-cytotoxicity and mutagenicity in vitro. Biomaterials 23:1749–1759

    Article  PubMed  CAS  Google Scholar 

  34. Macnair R, Wilkinson R, MacDonald C, Goldie I, Jones D, Grant M (1996) Application of confocal laser scanning microscopy to cytocompatibility testing of potential orthopaedic materials in immortalised osteoblast-like cell lines. Cells Mater 6:71–78

    Google Scholar 

  35. Tan K, Chua C, Leong K, Cheah C, Cheang P, Bakar MA et al (2003) Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123

    Article  PubMed  CAS  Google Scholar 

  36. Tan K, Chua C, Leong K, Naing M, Cheah C (2005) Fabrication and characterization of three-dimensional poly (ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H 219:183–194

    Article  PubMed  CAS  Google Scholar 

  37. Uhthoff HK, Poitras P, Backman DS (2006) Internal plate fixation of fractures: short history and recent developments. J Orthop Sci 11:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lane WA (1895) Some remarks on the treatment of fractures. Br Med J 1:861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. McMillin C. Evaluation of PEKEKK composites for spine implants. Soc Adv Mater Process Eng (USA) 1993:591–598

  40. Polineni VK, Wang A, Essner A, Lin R, Chopra A, Stark C et al (1998) Characterization of carbon fiber-reinforced PEEK composite for use as a bearing material in total hip replacements. ASTM Spec Tech Publ 1346:266–273

    Google Scholar 

  41. Li S, Burstein AH (1994) Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J Bone Joint Surg Am 76:1080–1090

    PubMed  CAS  Google Scholar 

  42. Prendergast PJ, Galibarov P, Lowery C, Lennon A (2011) Computer simulating a clinical trial of a load-bearing implant: an example of an intramedullary prosthesis. J Mech Behav Biomed Mater 4:1880–1887

    Article  PubMed  CAS  Google Scholar 

  43. Karimi A, Navidbakhsh M, Alizadeh M, Razaghi R (2014) A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions. Biomed Eng 59:439–446

    CAS  Google Scholar 

  44. Karimi A, Navidbakhsh M, Yousefi H (2014) Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res 105:404–408

    Article  CAS  Google Scholar 

  45. Karimi A, Rahmati M, Navidbakhsh M (2015) Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data. Bioengineered 6(3):153–160

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Hassani.

Ethics declarations

Conflicts of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, F., Hassani, K., Solhjoei, N. et al. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study. Australas Phys Eng Sci Med 38, 569–580 (2015). https://doi.org/10.1007/s13246-015-0380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0380-3

Keywords

Navigation