Skip to main content
Log in

Accuracy assessment of discontinuous Galerkin spectral element method in simulating supersonic free jets

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The study performs large eddy simulations of supersonic free jet flows using the discontinuous Galerkin spectral element method (DGSEM). The main objective of the present work is to assess the resolution requirements for adequate simulation of such flows with the DGSEM approach. The study looked at the influence of the mesh and the spatial discretization accuracy on the simulation results. The present analysis involves four simulations, incorporating three different numerical meshes and two different orders of spatial discretization accuracy. The numerical meshes are generated with distinct mesh topologies and refinement levels. Detailed descriptions of the grid generation and refinement procedures are presented. The study compares flow property profiles and power spectral densities of velocity components with experimental data. The results show a consistent improvement in the computed data as the simulation resolution increases. This investigation revealed a trade-off between mesh and polynomial refinement, striking a balance between computational cost and the accuracy of large eddy simulation results for turbulent flow analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Woodmansee MA, Iyer V, Dutton JC, Lucht RP (2004) Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield. AIAA J 42(6):1170–1180. https://doi.org/10.2514/1.10418

    Article  Google Scholar 

  2. Bridges J, Wernet MP (2008) Turbulence associated with broadband shock noise in hot jets. In: Proceedings of the 29th AIAA Aeroacoustics Conference, AIAA Paper No. 2008-2834, Vancouver, British Columbia, Canada, pp 1–21. https://doi.org/10.2514/6.2008-2834

  3. Morris PJ, Zaman KBMQ (2010) Velocity measurements in jets with application to noise source modeling. J Sound Vib 329:394–414. https://doi.org/10.1016/j.jsv.2009.09.024

    Article  Google Scholar 

  4. Bogey C, Bailly C (2010) Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets. J Fluid Mech 663:507–538. https://doi.org/10.1017/S0022112010003605

    Article  Google Scholar 

  5. DeBonis JR (2017) Prediction of turbulent temperature fluctuations in hot jets. In: Proceedings of the 23th AIAA Computational Fluid Dynamics Conference, AIAA Paper No. 2017-0610, Denver, CO, pp 1–25. https://doi.org/10.2514/6.2017-3610

  6. Brès GA, Ham FE, Nichols JW, Lele SK (2017) Unstructured large-eddy simulations of supersonic jets. AIAA J 55(4):1164–1184. https://doi.org/10.2514/1.J055084

    Article  Google Scholar 

  7. Junqueira-Junior C, Yamouni S, Azevedo JLF, Wolf WR (2018) Influence of different subgrid-scale models in low-order LES of supersonic jet flows. J Braz Soc Mech Sci Eng 40(258):1–29. https://doi.org/10.1007/s40430-018-1182-9

    Article  Google Scholar 

  8. Abreu DF, Junqueira-Junior CA, Dauricio ET, Azevedo JLF (2022) Study on the resolution of large-eddy simulations for supersonic jet flows. In: Proceedings of the AIAA Aviation 2022 Forum, AIAA Paper No. 2022-3327, Chicago, IL, pp 1–16. https://doi.org/10.2514/6.2022-3327

  9. Zhang Y, Chen H, Zhang M, Zhang M, Li Z, Fu S (2015) Performance prediction of conical nozzle using Navier–Stokes computation. J Propul Power 31(1):192–203. https://doi.org/10.2514/1.B35164

    Article  Google Scholar 

  10. Pope SB (2000) Turbulent flows, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Bodony DJ, Lele JK (2008) Current status of jet noise predicitions using large-eddy simulation. AIAA J 46(2):364–380. https://doi.org/10.2514/1.24475

    Article  Google Scholar 

  12. Bogey C, Marsden O, Bailly C (2011) Large-eddy simulation of the flow and acoustic fields of a Reynolds number \(10^5\) subsonic jet with tripped exit boundary layers. Phys Fluids 23(035104):1–20. https://doi.org/10.1063/1.3555634

    Article  Google Scholar 

  13. Yang S, Yi P, Habchi C (2020) Real-fluid injection modeling and LES simulation of the ECN spray A injector using a fully compressible two-phase flow approach. Int J Multiph Flow 122(103145):1–21. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103145

    Article  Google Scholar 

  14. Pradhan S, Ghosh S (2023) LES of compressible round jet impinging on a flat plate. In: Proceedings of the AIAA SciTech 2023 Forum, AIAA Paper No. 2023-2150, National Harbor, MD, pp 1–10. https://doi.org/10.2514/6.2023-2150

  15. Deng X, Jiang Z-H, Vincent P, Xiao F, Yan C (2022) A new paradigm of dissipation-adjustable, multi-scale resolving schemes for compressible flows. J Comput Phys 466(111287):1–24. https://doi.org/10.1016/j.jcp.2022.111287

    Article  MathSciNet  Google Scholar 

  16. Noah K, Lien F-S, Yee E (2021) Large-eddy simulation of subsonic turbulent jets using the compressible lattice Boltzmann method. Int J Numer Methods Fluids 93:927–952. https://doi.org/10.1002/fld.4914

    Article  MathSciNet  Google Scholar 

  17. Bogey C, Marsden O (2016) Simulations of initially highly disturbed jets with experiment-like exit boundary layers. AIAA J 54(4):1299–1312. https://doi.org/10.2514/1.J054426

    Article  Google Scholar 

  18. Faranosov GA, Goloviznin VM, Karabasov SA, Kondakov VG, Kopiev VF, Zaitsev MA (2013) CABARET method on unstructured hexahedral grids for jet noise computation. Comput Fluids 88:165–179. https://doi.org/10.1016/j.compfluid.2013.08.011

    Article  Google Scholar 

  19. Brès GA, Jordan P, Jaunet V, Le Rallic M, Cavalieri AVG, Towne A, Lele SK, Colonius T, Schmidt OT (2018) Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J Fluid Mech 851:83–124. https://doi.org/10.1017/jfm.2018.476

    Article  MathSciNet  Google Scholar 

  20. Lorteau M, de la Llave Plata M, Couaillier V (2018) Turbulent jet simulation using high-order DG methods for aeroacoustic analysis. Int J Heat Fluid Flow 70:380–390. https://doi.org/10.1016/j.ijheatfluidflow.2018.01.012

    Article  Google Scholar 

  21. Lindblad D, Sherwin SJ, Cantwell CD, Lawrence JLT, Proença AR, Ginard MM (2023) Large eddy simulations of isolated and installed jet noise using high-order discontinuous Galerkin method. In: Proceedings of the AIAA SciTech 2023 Forum, AIAA Paper No. 2023-1546, National Harbor, MD, pp 1–21. https://doi.org/10.2514/6.2023-1546

  22. Mendez S, Shoeybi M, Sharma A, Ham FE, Lele SK, Moin P (2012) Large-eddy simulations of perfectly expanded supersonic jets using an unstructured solver. AIAA J 50(5):1103–1118. https://doi.org/10.2514/1.J051211

    Article  Google Scholar 

  23. Langenais A, Vuillot F, Troyes J, Bailly C (2019) Accurate simulation of the noise generated by a hot supersonic jet including turbulence tripping and nonlinear acoustic propagation. Phys Fluids 31(016105):1–31. https://doi.org/10.1063/1.5050905

    Article  Google Scholar 

  24. Bogey C (2021) Acoustic tones in the near-nozzle region of jets: characteristics and variations between Mach numbers 0.5 and 2. J Fluid Mech 921:3. https://doi.org/10.1017/jfm.2021.426

    Article  MathSciNet  Google Scholar 

  25. Junqueira-Junior C, Azevedo JLF, Panetta J, Wolf WR, Yamouni S (2020) On the scalability of CFD tool for supersonic jet flow configurations. Parallel Comput 93:102620. https://doi.org/10.1016/j.parco.2020.102620

    Article  MathSciNet  Google Scholar 

  26. Shen W, Miller SAE (2020) Validation of a high-order large eddy simulation solver for acoustic prediction of supersonic jet flow. J Theor Comput Acoust 28(3):1950023. https://doi.org/10.1142/S2591728519500233

    Article  MathSciNet  Google Scholar 

  27. Chauhan M, Massa L (2022) Large-eddy simulations of supersonic jet noise with discontinuous Galerkin methods. AIAA J 60(3):1451–1470. https://doi.org/10.2514/1.J060424

    Article  Google Scholar 

  28. Kopriva DA, Gassner G (2010) On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J Sci Comput 44:136–155. https://doi.org/10.1007/s10915-010-9372-3

    Article  MathSciNet  Google Scholar 

  29. Hindenlang F, Gassner GJ, Altmann C, Beck A, Staudenmaier M, Munz C-D (2012) Explicit discontinuous Galerkin methods for unsteady problems. Comput Fluids 61:86–93. https://doi.org/10.1016/j.compfluid.2012.03.006

    Article  MathSciNet  Google Scholar 

  30. Krais N, Beck A, Bolemann T, Frank H, Flad D, Gassner G, Hindenlang F, Hoffmann M, Juhn T, Sonntag M, Munz C-D (2021) FLEXI: A high order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws. Comput Math Appl 81:186–219. https://doi.org/10.1016/j.camwa.2020.05.004

    Article  MathSciNet  Google Scholar 

  31. Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows, 1st edn. Springer, Dordrecht

    Book  Google Scholar 

  32. Vreman B, Geurts B, Kuerten H (1995) A priori tests of large eddy simulation of the compressible plane mixing layer. J Eng Math 29:299–327. https://doi.org/10.1007/BF00042759

    Article  MathSciNet  Google Scholar 

  33. White FM (2006) Viscous fluid flow, 3rd edn. McGraw-Hill Education, New York

    Google Scholar 

  34. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  35. Gassner GJ, Beck AD (2013) On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor Comput Fluid Dyn 27:221–237. https://doi.org/10.1007/s00162-011-0253-7

    Article  Google Scholar 

  36. Gassner GJ (2014) A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int J Numer Meth Fluids 76(1):28–50. https://doi.org/10.1002/fld.3923

    Article  MathSciNet  Google Scholar 

  37. Beck AD, Bolemann T, Flad D, Frank H, Gassner GJ, Hindenlang F, Munz C-D (2014) High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int J Numer Meth Fluids 76(8):522–548. https://doi.org/10.1002/fld.3943

    Article  MathSciNet  Google Scholar 

  38. Flad D, Gassner G (2017) On the use of kinetic energy preserving DG-schemes for large eddy simulation. J Comput Phys 350:782–795. https://doi.org/10.1016/j.jcp.2017.09.004

    Article  MathSciNet  Google Scholar 

  39. Pirozzoli S (2011) Numerical methods for high-speed flows. Ann Rev Fluid Mech 43:163–194. https://doi.org/10.1146/annurev-fluid-122109-160718

    Article  MathSciNet  Google Scholar 

  40. Gassner GJ, Winters AR, Kopriva DA (2016) Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J Comput Phys 327:39–66. https://doi.org/10.1016/j.jcp.2016.09.013

    Article  MathSciNet  Google Scholar 

  41. Dauricio ETV, Azevedo JLF (2021) Large eddy simulations of turbulent channel flows using split form DG schemes. In: Proceedings of the AIAA SciTech 2021 Forum, AIAA Paper No. 2021-1209, Virtual Event, pp 1–15. 10.2514/6.2021-1209

  42. Dauricio ETV, Azevedo JLF (2023) A wall model for external laminar boundary layer flows applied to the wall-modeled LES framework. J Comput Phys 484(112087):1–21. https://doi.org/10.1016/j.jcp.2023.112087

    Article  MathSciNet  Google Scholar 

  43. Harten A, Hyman JM (1983) Self adjusting grid methods for one dimensional hyperbolic conservation laws. J Comput Phys 50(2):253–269. https://doi.org/10.1016/0021-9991(83)90066-9

    Article  MathSciNet  Google Scholar 

  44. Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131(2):267–279. https://doi.org/10.1006/jcph.1996.5572

    Article  MathSciNet  Google Scholar 

  45. Kopriva DA (2009) Implementing spectral methods for partial differential equations, algorithms for scientists and engineers, 1st edn. Springer, Dordrecht

    Book  Google Scholar 

  46. Sonntag M, Munz C-D (2017) Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells. J Sci Comput 70:1262–1289. https://doi.org/10.1007/s10915-016-0287-5

    Article  MathSciNet  Google Scholar 

  47. Jameson A, Schmidt W, Turkel E (1981) Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In: Proceedings of the 14th Fluid and Plasma Dynamics Conference, AIAA Paper No. 81-1259, Palo Alto, CA, pp 1–17. https://doi.org/10.2514/6.1981-1259

  48. Hirsch C (1990) Numerical computation of internal and external flows. In: Peyret R, Taylor TD (eds) Computational methods for inviscid and viscous flows, vol 2, 1st edn. Wiley, Hoboken

    Google Scholar 

  49. Institute of Aerodynamics and Gas Dynamics, University of Stuttgart: FLEXI—high performance open source CFD. Accessed 31 Jan 2024. https://www.flexi-project.org

  50. Geuzaine C, Remacle J-F (2009) GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331. https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  51. Flad DG, Frank HM, Beck AD, Munz C-D (2014) A discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics. In: Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper No. 2014-2740, Atlanta, GA, pp 1–10. https://doi.org/10.2514/6.2014-2740

  52. IDRIS—Institute for development and resources in intensive scientific computing: Jean Zay: HPE SGI 8600 computer. http://www.idris.fr/eng/jean-zay/index.html. Accessed 31 Jan 2024

Download references

Acknowledgements

The authors acknowledge the support for the present research provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, under the Research Grant No. 309985/2013-7 . The work is also supported by the computational resources from the Center for Mathematical Sciences Applied to Industry, CeMEAI, funded by Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, under the Research Grant No. 2013/07375-0 . The authors further acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer. This work was also granted access to the HPC resources of IDRIS under the allocation A0152A12067 made by GENCI. The first author acknowledges authorization by his employer, Embraer S.A., which has allowed his participation in the present research effort. Additional support to the second author under the FAPESP Research Grant No. 2013/07375-0 is also gratefully acknowledged. The authors acknowledge Dr. Eron T. V. Dauricio, for the support on the development of the simulations within the FLEXI framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F. Abreu.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, D.F., Azevedo, J.L.F. & Junqueira-Junior, C. Accuracy assessment of discontinuous Galerkin spectral element method in simulating supersonic free jets. J Braz. Soc. Mech. Sci. Eng. 46, 231 (2024). https://doi.org/10.1007/s40430-024-04788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04788-z

Keywords

Navigation