Skip to main content
Log in

Low-velocity impact response of 3D woven solid structures for multi-scale applications: role of yarn maneuverability and weave architecture

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional woven fabrics (3DWFs) possess excellent mechanical properties and structural integrity due to reinforcement in the through-thickness direction. Composites made of 3DWFs have manifested outstanding impact resistance phenomena like delamination suppression, enhanced ballistic impact, and blast performance. This study investigates the low-velocity impact (LVI) responses of 3D orthogonal and 3D angle-interlock woven fabrics of various weave architectures. Four hybridized structures were manufactured by varying the binder yarn path along the Z-axis using multiple high-performance fibres. 3DWFs were subjected to single and multiple LVI tests at an impact energy of 50J and a velocity of 3.14 ms−1. The experimental results revealed that weave architecture, binder yarn float-length, yarn-to-yarn crossover points, stuffer binder ratio, and yarn maneuverability influence the damage tolerance of 3DWFs. Individual 3DWFs were subjected to multiple LVI events to determine how they would react up to catastrophic damage, such as complete perforation and yarn pull-out. Single and multiple LVI experiments showed that hybridized 3DWFs were more resilient to low-velocity impacts than virgin E-glass preforms. 3D orthogonal plain 1 × 1 E-glass/Kevlar (KGORPL) hybrid structure outperformed its counterparts during repeated impact episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Bilisik K (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82:725–743. https://doi.org/10.1177/0040517511435013

    Article  CAS  Google Scholar 

  2. Bilisik K (2011) Multiaxis three dimensional (3D) woven fabric. Adv Mod Woven Fabr Technol. https://doi.org/10.5772/16530

    Article  Google Scholar 

  3. Bilisik K (2010) Multiaxis 3D weaving: comparison of developed two weaving methods (tube-rapier weaving versus tube-carrier weaving) and effects of bias yarn path to the preform properties. Fibers Polym 11:104–114. https://doi.org/10.1007/s12221-010-0104-y

    Article  Google Scholar 

  4. Smith LV, Swanson SR (1995) Micro-mechanics parameters controlling the strength of braided composites. Compos Sci Technol 54:177–184. https://doi.org/10.1016/0266-3538(95)00045-3

    Article  CAS  Google Scholar 

  5. Gereke T, Cherif C (2019) A review of numerical models for 3D woven composite reinforcements. Compos Struct 209:60–66. https://doi.org/10.1016/j.compstruct.2018.10.085

    Article  Google Scholar 

  6. Olhan S, Khatkar V, Behera BK (2022) Impact behavior of long glass fibre reinforced aluminum metal matrix composite prepared by friction stir processing technique for automotive. J Compos Mater 56:2157–2167

    Article  CAS  Google Scholar 

  7. Sam Huang H, Waas AM (2014) Quasi-static mode II fracture tests and simulations of Z-pinned woven composites. Eng Fract Mech 126:155–165. https://doi.org/10.1016/j.engfracmech.2014.05.002

    Article  Google Scholar 

  8. Mouritz AP. Mechanics of 3D Fibre Reinforced Polymer Composites. Encycl. Contin. Mech., 2020, p. 1533–49. https://doi.org/10.1007/978-3-662-55771-6_93.

  9. Zhang D, Gu Y, Zhang Z, Jia M, Yue S, Li G. Effect of off-axis angle on low-velocity impact and compression after impact damage mechanisms of 3D woven composites. Mater Des 2020;192. https://doi.org/10.1016/j.matdes.2020.108672.

  10. Olhan S, Antil B, Khatkar V, Behera BK. Mechanical, thermal, and viscoelastic behavior of sisal fibre-based structural composites for automotive applications: Experimental and FEM analysis. Compos Struct 2023;322. https://doi.org/10.1016/j.compstruct.2023.117427.

  11. Olhan S, Khatkar V, Behera BK (2021) Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci 56:18867–18910. https://doi.org/10.1007/s10853-021-06509-6

    Article  ADS  CAS  Google Scholar 

  12. Dahale M, Archer E, McIlhagger A, Ralph C, Neale G, Dempsey C. Three-dimensional woven composites. Des. Manuf. Struct. Compos., Elsevier; 2023, p. 189–206. https://doi.org/10.1016/B978-0-12-819160-6.00014-7.

  13. Chen X. Design and Manufacture of 3D Woven Textiles. Adv. Weav. Technol., Springer International Publishing; 2022, p. 449–74. https://doi.org/10.1007/978-3-030-91515-5_12.

  14. Olhan S, Behera S, Khatkar V, Manufacturing BB-J of, 2023. Investigating the impact of different machinability processes and fibre architecture on the bearing performance of pin-loaded textile structural composites for. Elsevier n.d.

  15. Olhan S, Processes BB-J of M, 2023. Mechanical, thermogravimetric, and dynamic mechanical behavior of high-performance textile structural composite panels for automotive applications. Elsevier n.d.

  16. Bilisik K (2013) Three-dimensional braiding for composites: a review. Text Res J 83:1414–1436. https://doi.org/10.1177/0040517512450766

    Article  CAS  Google Scholar 

  17. Mouritz AP, Cox BN (2010) A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched and pinned composites. Compos Part A Appl Sci Manuf 41:709–728. https://doi.org/10.1016/j.compositesa.2010.02.001

    Article  Google Scholar 

  18. Cox BN, Dadkhah MS, Morris WL, Flintoff JG (1994) Failure mechanisms of 3D woven composites in tension, compression, and bending. Acta Metall Mater 42:3967–3984. https://doi.org/10.1016/0956-7151(94)90174-0

    Article  CAS  Google Scholar 

  19. Chu T-L, Ha-Minh C, Imad A (2017) Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact. Compos Struct 159:267–277. https://doi.org/10.1016/j.compstruct.2016.09.039

    Article  Google Scholar 

  20. Chen X, Taylor LW, Tsai LJ (2011) An overview on fabrication of three-dimensional woven textile preforms for composites. Text Res J 81:932–944. https://doi.org/10.1177/0040517510392471

    Article  CAS  Google Scholar 

  21. Khokar N (2001) 3D-weaving: theory and practice. J Text Inst 92:193–207. https://doi.org/10.1080/00405000108659570

    Article  Google Scholar 

  22. Hearle JWS, Chen X (2009) 3D woven preforms and properties for textile composites. In: ICCM International conference on composites materials

  23. Tan KT, Watanabe N, Iwahori Y (2012) Impact damage resistance, response, and mechanisms of laminated composites reinforced by through-thickness stitching. Int J Damage Mech 21:51–80. https://doi.org/10.1177/1056789510397070

    Article  CAS  Google Scholar 

  24. Tripathi L, Chowdhury S, Behera BK (2020) Modeling and simulation of impact behavior of 3D woven solid structure for ballistic application. J Ind Text 51:6065S-6086S. https://doi.org/10.1177/1528083720980467

    Article  CAS  Google Scholar 

  25. Korkmaz M, Okur A (2022) The review about the numerical modelling and analysis of 3D woven fabrics. J Text Inst. https://doi.org/10.1080/00405000.2022.2048517

    Article  Google Scholar 

  26. Dash BA, Behera BK (2015) A study on structure property relationship of 3D woven composites. Mater Today Proc 2:2991–3007

    Article  CAS  Google Scholar 

  27. Behera BK, Jain M, Tripathi L, Choudhury S (2022) Low-velocity impact behaviour of textile-reinforced composite sandwich panels. Sandw Compos Fabr Charact. https://doi.org/10.1201/9781003143031-12/LOW-VELOCITY-IMPACT-BEHAVIOUR-TEXTILE-REINFORCED-COMPOSITE-SANDWICH-PANELS-BEHERA-MANYA-JAIN-LEKHANI-TRIPATHI-SOUMYA-CHOWDHURY

    Article  Google Scholar 

  28. Jinlian H (2008) 3-D fibrous assemblies: properties, applications and modelling of three-dimensional textile structures. https://doi.org/10.1533/9781845694982.

  29. Yi HL, Ding X (2004) Conventional approach on manufacturing 3D woven preforms used for composites. J Ind Text 34:39–50. https://doi.org/10.1177/1528083704045847

    Article  Google Scholar 

  30. Veyet F, Boussu F, Dumont N (2022) 3D weaving process adapted for natural and high performance fibres. In: Kyosev Y, Boussu F (eds) Advanced weaving technology. Springer International Publishing, Berlin, pp 475–504

    Chapter  Google Scholar 

  31. Lässig R, Eisenhut M, Mathias A, Schulte RT, Peters F, Kühmann T et al (2012) Serienproduktion von hochfesten Faserverbundbauteilen. Industrial-ProductionDe, p 72

  32. Olhan S, Khatkar V, Behera BK (2023) Novel high-performance textile fibre-reinforced aluminum matrix structural composites fabricated by FSP. Mater Sci Eng B 289:116265

    Article  CAS  Google Scholar 

  33. Elias A, Laurin F, Kaminski M, Gornet L (2017) Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix. Compos Struct 159:228–239

    Article  Google Scholar 

  34. Paul P, Ahirwar M, Behera BK (2022) Acoustic behaviour of needle punched nonwoven structures produced from various natural and synthetic fibers. Appl Acoust. https://doi.org/10.1016/j.apacoust.2022.109043

    Article  Google Scholar 

  35. Paul P, Ahirwar M, Behera BK (2023) Acoustic behavior of three-dimensional woven fabrics and their composites: role of fiber type and weave architecture. J Text Inst. https://doi.org/10.1080/00405000.2023.2284512

    Article  Google Scholar 

  36. Baucom JN, Zikry MA (2005) Low-velocity impact damage progression in woven E-glass composite systems. Compos Part A Appl Sci Manuf 36:658–664

    Article  Google Scholar 

  37. Baucom JN, Zikry MA (2003) Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation. J Compos Mater 37:1651–1674. https://doi.org/10.1177/0021998303035178

    Article  CAS  Google Scholar 

  38. Bibo GA, Hogg PJ (1996) The role of reinforcement architecture on impact damage mechanisms and post-impact compression behaviour. J Mater Sci 31:1115–1137. https://doi.org/10.1007/BF00353091

    Article  ADS  CAS  Google Scholar 

  39. Arendts FJ, Drechsler K, Brandt J (1993) Advanced textile structural composites—status and outlook. In: Proceedings of the international conference on advanced composite materials, pp 409–416

  40. Brandt J, Drechsler K, Arendts FJ (1996) Mechanical performance of composites based on various three-dimensional woven-fibre preforms. Compos Sci Technol 56:381–386. https://doi.org/10.1016/0266-3538(95)00135-2

    Article  Google Scholar 

  41. Chen F, Hodgkinson JM (2009) Impact behaviour of composites with different fibre architecture. In: Proceedings of the institution of mechanical engineers, part G: journal of aerospace engineering, vol 223, pp 1009–17. https://doi.org/10.1243/09544100JAERO451

  42. Gu B (2016) Modelling of 3D woven fabrics for ballistic protection. Adv Fibrous Compos Mater Ballist Prot. https://doi.org/10.1016/B978-1-78242-461-1.00006-6

    Article  Google Scholar 

  43. Baral N, Cartié DDR, Partridge IK, Baley C, Davies P (2010) Improved impact performance of marine sandwich panels using through-thickness reinforcement: experimental results. Compos Part B Eng 41:117–123. https://doi.org/10.1016/j.compositesb.2009.12.002

    Article  CAS  Google Scholar 

  44. Tripathi L, Chowdhury S, Behera BK (2020) Modelling and simulation of compression behaviour of 3D woven hollow composite structures using FEM analysis. Text Leather Rev 3:6–18

    Article  Google Scholar 

  45. Abtew MA, Boussu F, Bruniaux P (2022) 3D woven fabrics-a promising structure for women soft body armor development. In: Kyosev Y, Boussu F (eds) Advanced weaving technology. Springer International Publishing, Berlin, pp 607–631. https://doi.org/10.1007/978-3-030-91515-5_18

    Chapter  Google Scholar 

  46. Lefebvre M, Boussu F (2009) High energy absorption of warp interlock fabrics: application to high speed impact of fragments. researchgate.net, pp 429–35. https://doi.org/10.1051/dymat/2009061.

  47. Zahid B, Chen X (2014) Impact performance of single-piece continuously textile reinforced riot helmet shells. J Compos Mater 48:761–766. https://doi.org/10.1177/0021998313477173

    Article  Google Scholar 

  48. Dash BP, Behera BK, Mishra R, Militky J (2013) Modeling of internal geometry of 3D woven fabrics by computation method. J Text Inst 104:312–321. https://doi.org/10.1080/00405000.2012.720850

    Article  Google Scholar 

  49. Buchanan S, Quinn J, Mcilhagger A, Grigorash A, Archer E (2010) Modeling the geometric characteristics of five-dimensionally woven composites. J Reinf Plast Compo 29:3475–3479. https://doi.org/10.1177/0731684410376331

    Article  CAS  Google Scholar 

  50. Chen X, Spola M, Gisbert Paya J, Mollst SP (2009) Experimental studies on the structure and mechanical properties of multi-layer and angle-interlock woven structures. Taylor Fr 90:91–99. https://doi.org/10.1080/00405009908658693

    Article  Google Scholar 

  51. Behera BK, Dash BP (2014) An experimental investigation into the mechanical behaviour of 3D woven fabrics for structural composites. Fibers Polym 15:1950–1955. https://doi.org/10.1007/s12221-014-1950-9

    Article  CAS  Google Scholar 

  52. Chen X, Zanini I (1997) An experimental investigation into the structure and mechanical properties of 3D woven orthogonal structures. J Text Inst 88:449–464. https://doi.org/10.1080/00405000.1997.11090896

    Article  Google Scholar 

  53. Jang BZ, Chen LC, Hwang LR, Hawkes JE, Zee RH (1990) The response of fibrous composites to impact loading. Polym Compos 11:144–157. https://doi.org/10.1002/pc.750110303

    Article  CAS  Google Scholar 

  54. Erlich DC, Shockey DA, Simons JW (2003) Slow penetration of ballistic fabrics. Text Res J 73:179–184. https://doi.org/10.1177/004051750307300215

    Article  CAS  Google Scholar 

  55. Carlson RA (2010) Pleated ballistic package for soft body armor

  56. Nguyen LH, Ryan S, Cimpoeru SJ, Mouritz AP, Orifici AC (2014) The effect of target thickness on the ballistic performance of UHMW polyethylene composite. In: Proceedings of the 28th 28th International Symposium on Ballistics 2014, vol 2, pp 942–945

  57. Pekbey Y, Aslantaş K, Yumak N (2020) The effect of hybridization on the ballistic impact behavior of nanostructured hybrid composite plates. El-Cezeri J Sci Eng 7:124–134. https://doi.org/10.31202/ecjse.594734

    Article  Google Scholar 

  58. Zhang D, Sun Y, Chen L, Zhang S, Pan N (2014) Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate. Mater Des 54:315–322. https://doi.org/10.1016/j.matdes.2013.08.074

    Article  CAS  Google Scholar 

  59. Karahan M (2008) Comparison of ballistic performance and energy absorption capabilities of woven and unidirectional aramid fabrics. Text Res J 78:718–730. https://doi.org/10.1177/0040517508090487

    Article  CAS  Google Scholar 

  60. Yang CC, Ngo T, Tran P (2015) Influences of weaving architectures on the impact resistance of multi-layer fabrics. Mater Des 85:282–295. https://doi.org/10.1016/j.matdes.2015.07.014

    Article  CAS  Google Scholar 

  61. Byun JH, Chou TW (1990) Elastic properties of three-dimensional angle-interlock fabric preforms. J Text Inst 81:538–548. https://doi.org/10.1080/00405009008658727

    Article  Google Scholar 

  62. Chen X, Yang D (2010) Use of 3D angle-interlock woven fabric for seamless female body armor: part 1: ballistic evaluation. Text Res J 80:1581–1588. https://doi.org/10.1177/0040517510363187

    Article  CAS  Google Scholar 

  63. Abtew MA, Loghin C, Cristian I, Boussu F, Bruniaux P, Chen Y et al (2018) Two dimensional (2D) P-aramid dry multi-layered woven fabrics deformational behaviour for technical applications. In: IOP Conference series: materials science and engineering, vol 374. https://doi.org/10.1088/1757-899X/374/1/012055

  64. Abtew MA, Bruniaux P, Boussu F, Loghin C, Cristian I, Chen Y et al (2018) Female seamless soft body armor pattern design system with innovative reverse engineering approaches. Int J Adv Manuf Technol 98:2271–2285. https://doi.org/10.1007/s00170-018-2386-y

    Article  Google Scholar 

  65. Backer S (1951) The relationship between the structural geometry of a textile fabric and its physical properties: part IV: interstice geometry and air permeability. Text Res J 21:703–714. https://doi.org/10.1177/004051755102101002

    Article  CAS  Google Scholar 

  66. Suppakul P, Bandyopadhyay S (2002) The effect of weave pattern on the mode-I interlaminar fracture energy of E-glass/vinyl ester composites. Compos Sci Technol 62:709–717. https://doi.org/10.1016/S0266-3538(01)00220-2

    Article  CAS  Google Scholar 

  67. Hamdaoui M, Sawssen Achour N, Ben NS (2014) The influence of woven fabric structure on kinetics of water sorption. J Eng Fiber Fabr 9:101–106. https://doi.org/10.1177/155892501400900112

    Article  Google Scholar 

  68. Scelzo WA, Backer S, Boyce MC (1994) Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth: part I: understanding tongue tear. Text Res J 64:291–304. https://doi.org/10.1177/004051759406400506

    Article  Google Scholar 

  69. Teixeira NA, Platt MM, Hamburger WJ (1955) Mechanics of elastic performance of textile materials: part XII: relation of certain geometric factors to the tear strength of woven fabrics. Text Res J 25:838–861. https://doi.org/10.1177/004051755502501003

    Article  CAS  Google Scholar 

  70. Shimek ME, Fahrenthold EP (2012) Effects of weave type on the ballistic performance of fabrics. AIAA J 50:2558–2565. https://doi.org/10.2514/1.J051708

    Article  ADS  Google Scholar 

  71. Tabiei A, Nilakantan G (2008) Ballistic impact of dry woven fabric composites: a review. Appl Mech Rev 61:0108011–01080113. https://doi.org/10.1115/1.2821711

    Article  Google Scholar 

  72. Naik NK, Shrirao P (2004) Composite structures under ballistic impact. Compos Struct 66:579–590. https://doi.org/10.1016/j.compstruct.2004.05.006

    Article  Google Scholar 

  73. Naik NK, Azad SNM, Durga PP (2002) Stress and failure analysis of 3D angle interlock woven composites. J Compos Mater 36:93–123. https://doi.org/10.1177/0021998302036001303

    Article  CAS  Google Scholar 

  74. Naik NK, Borade SV, Arya H, Sailendra M, Prabhu SV (2002) Experimental studies on impact behaviour of woven fabric composites: effect of impact parameters. J Reinf Plast Compos 21:1347–1362. https://doi.org/10.1177/0731684402021015294

    Article  CAS  Google Scholar 

  75. Naik NK, Shrirao P, Reddy BCK (2006) Ballistic impact behaviour of woven fabric composites: formulation. Int J Impact Eng 32:1521–1552. https://doi.org/10.1016/j.ijimpeng.2005.01.004

    Article  Google Scholar 

  76. Naik NK, Sekher YC, Meduri S (2000) Damage in woven-fabric composites subjected to low-velocity impact. Compos Sci Technol 60:731–744

    Article  Google Scholar 

  77. Mamivand M, Liaghat GH (2010) A model for ballistic impact on multi-layer fabric targets. Int J Impact Eng 37:806–812. https://doi.org/10.1016/j.ijimpeng.2010.01.003

    Article  Google Scholar 

  78. Ha-Minh C, Boussu F, Kanit T, Crépin D, Imad A (2011) Analysis on failure mechanisms of an interlock woven fabric under ballistic impact. Eng Fail Anal 18:2179–2187. https://doi.org/10.1016/j.engfailanal.2011.07.011

    Article  Google Scholar 

  79. Ha-Minh C, Boussu F, Kanit T, Crépin D, Imad A (2012) Effect of frictions on the ballistic performance of a 3D warp interlock fabric: numerical analysis. Appl Compos Mater 19:333–347. https://doi.org/10.1007/s10443-011-9202-2

    Article  ADS  Google Scholar 

  80. Ha-Minh C (2016) Numerical analysis of the ballistic performance of textile fabrics. In: Cen X (ed) Advanced fibrous composite materials for ballistic protection. Elsevier, Amsterdam, pp 457–500. https://doi.org/10.1016/B978-1-78242-461-1.00016-9

    Chapter  Google Scholar 

  81. Ha-Minh C, Imad A, Boussu F, Kanit T (2016) Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic impact. Int J Impact Eng 88:91–101

    Article  Google Scholar 

  82. Smith JC, Mccrackin FL, Schiefer HF (1958) Stress–strain relationships in yarns subjected to rapid impact loading: part V: wave propagation in long textile yarns impacted transversely. Text Res J 28:288–302. https://doi.org/10.1177/004051755802800402

    Article  CAS  Google Scholar 

  83. Naik NK, Sekher YC (1998) Damage in laminated composites due to low velocity impact. J Reinf Plast Compos 17:1232–1263. https://doi.org/10.1177/073168449801701401

    Article  CAS  Google Scholar 

  84. Yang Y, Chen X (2019) Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact. Compos Struct 224:111015. https://doi.org/10.1016/j.compstruct.2019.111015

    Article  Google Scholar 

  85. Chou S, Chen HC, Wu CC (1992) BMI resin composites reinforced with 3D carbon-fibre fabrics. Compos Sci Technol 43:117–128. https://doi.org/10.1016/0266-3538(92)90002-K

    Article  CAS  Google Scholar 

  86. Ha-Minh C, Imad A, Boussu F, Kanit T (2013) On analytical modelling to predict of the ballistic impact behaviour of textile multi-layer woven fabric. Compos Struct 99:462–476. https://doi.org/10.1016/j.compstruct.2012.10.011

    Article  Google Scholar 

  87. Billon HH, Robinson DJ (2001) Models for the ballistic impact of fabric armour. Int J Impact Eng 25:411–422. https://doi.org/10.1016/S0734-743X(00)00049-X

    Article  Google Scholar 

  88. Gu B (2003) Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile. Compos Part B Eng 34:361–371. https://doi.org/10.1016/S1359-8368(02)00137-3

    Article  Google Scholar 

  89. Chocron S, Figueroa E, King N, Kirchdoerfer T, Nicholls AE, Sagebiel E et al (2010) Modeling and validation of full fabric targets under ballistic impact. Compos Sci Technol 70:2012–2022. https://doi.org/10.1016/j.compscitech.2010.07.025

    Article  CAS  Google Scholar 

  90. Das S, Jagan S, Shaw A, Pal A (2015) Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact. Compos Struct 120:129–140. https://doi.org/10.1016/j.compstruct.2014.09.063

    Article  Google Scholar 

  91. Ha-Minh C (2011) Mechanical behavior of woven materials subjected to a ballistic impact: experimental, numerical and analytical approaches

  92. Smith JC, McCrackin FL, Schiefer HF (1958) Stress–strain relationships in yarns subjected to rapid impact loading. Text Res J 28:288–302. https://doi.org/10.1177/004051755802800402

    Article  CAS  Google Scholar 

  93. Carr DJ (1999) Failure mechanisms of yarns subjected to ballistic impact. J Mater Sci Lett 18:585–588. https://doi.org/10.1023/A:1006655301587

    Article  CAS  Google Scholar 

  94. Stone WK, Schiefer HF, Fox G (1955) Stress–strain relationships in yarns subjected to rapid impact loading: part I: equipment, testing procedure, and typical results. Text Res J 25:520–528. https://doi.org/10.1177/004051755502500605

    Article  Google Scholar 

  95. Smith JC, Shouse PJ, Blandford JM, Towne KM (1961) Stress–strain relationships in yarns subjected to rapid impact loading: part VII: stress-strain curves and breaking-energy data for textile yarns. Text Res J 31:721–734. https://doi.org/10.1177/004051756103100807

    Article  CAS  Google Scholar 

  96. Briscoe BJ, Motamedi F (1992) The ballistic impact characteristics of aramid fabrics: the influence of interface friction. Wear 158:229–247. https://doi.org/10.1016/0043-1648(92)90041-6

    Article  Google Scholar 

  97. Cheng M, Chen W, Weerasooriya T (2005) Mechanical properties of Kevlar® KM2 single fiber. J Eng Mater Technol 127:197–203. https://doi.org/10.1115/1.1857937

    Article  CAS  Google Scholar 

  98. Jia X, Sun B, Gu B (2012) A numerical simulation on ballistic penetration damage of 3D orthogonal woven fabric at microstructure level. Int J Damage Mech 21:237–266. https://doi.org/10.1177/1056789510397078

    Article  Google Scholar 

  99. Jayan VR, Tripathi L, Behera PK, Petru M, Behera BK (2022) Prediction of internal geometry and tensile behavior of 3D woven solid structures by mathematical coding. J Ind Text 51:7034S-7055S. https://doi.org/10.1177/15280837211001348

    Article  Google Scholar 

  100. Engineering LH-S-W (1992) The ten-percent rule for preliminary sizing of fibrous composite structures. UiAdsabsHarvardEdu n.d.

  101. Duan Y, Keefe M, Bogetti TA, Cheeseman BA, Powers B (2006) A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact. Int J Impact Eng 32:1299–1312. https://doi.org/10.1016/j.ijimpeng.2004.11.005

    Article  Google Scholar 

  102. Barauskas R, Abraitienė A (2007) Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA. Int J Impact Eng 34:1286–1305. https://doi.org/10.1016/j.ijimpeng.2006.06.002

    Article  Google Scholar 

  103. Yang C, Tran P, Ngo T, Mendis P, Humphries W (2014) Effect of textile architecture on energy absorption of woven fabrics subjected to ballistic impact. In: Grant P, Steven QL, Leo Z (eds) Applied mechanics and materials, vol 553. Trans Tech Publications, Wollerau, pp 757–762. https://doi.org/10.4028/www.scientific.net/AMM.553.757

    Chapter  Google Scholar 

  104. Cunniff PM (1992) An analysis of the system effects in woven fabrics under ballistic impact. Text Res J 62:495–509. https://doi.org/10.1177/004051759206200902

    Article  CAS  Google Scholar 

  105. Shahid-ul-Islam, Butola BS (2019) Advanced functional textiles and polymers. https://doi.org/10.1002/9781119605843

  106. Ahmed A, Wei L (2015) The low-velocity impact damage resistance of the composite structures—a review. Rev Adv Mater Sci 40:127–145

    CAS  Google Scholar 

  107. Pingulkar H, Mache A, Munde Y, Siva I (2021) A comprehensive review on drop weight impact characteristics of bast natural fiber reinforced polymer composites. Mater Today Proc 44:3872–3880. https://doi.org/10.1016/j.matpr.2020.12.925

    Article  CAS  Google Scholar 

  108. Gong X (2011) Investigation of different geometric structure parameter for honeycomb textile composites on their mechanical performance. Cell

  109. Herb V, Martin E, Couégnat G (2012) Damage analysis of thin 3D-woven SiC/SiC composite under low velocity impact loading. Compos Part A Appl Sci Manuf 43:247–253. https://doi.org/10.1016/j.compositesa.2011.10.013

    Article  CAS  Google Scholar 

  110. Venkatasubramanian H, Raghuraman S (2015) Mechanical behaviour of abaca-glass-banana fibre reinforced hybrid composites. J Eng Sci Technol 10:958–971

    Google Scholar 

  111. López De Vergara U, Sarrionandia M, Gondra K, Aurrekoetxea J (2014) Impact behaviour of basalt fibre reinforced furan composites cured under microwave and thermal conditions. Compos Part B Eng 66:156–161. https://doi.org/10.1016/j.compositesb.2014.05.009

    Article  CAS  Google Scholar 

  112. Sarasini F, Tirillò J, Valente M, Valente T, Cioffi S, Iannace S et al (2013) Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Compos Part A Appl Sci Manuf 47:109–123. https://doi.org/10.1016/j.compositesa.2012.11.021

    Article  CAS  Google Scholar 

  113. Bensadoun F, Depuydt D, Baets J, Van Vuure AW, Verpoest I (2013) Influence of fibre architecture on impact and fatigue behaviour of flax fibre-based composites. In: ICCM International conferences on composite materials, vol 2013, pp 6237–48

  114. Dehkordi MT, Nosraty H, Shokrieh MM, Minak G, Ghelli D (2010) Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics. Mater Des 31:3835–3844. https://doi.org/10.1016/j.matdes.2010.03.033

    Article  CAS  Google Scholar 

  115. Roylance D (1977) Ballistics of transversely impacted fibers. Text Res J 47:679–684. https://doi.org/10.1177/004051757704701007

    Article  Google Scholar 

  116. Morrison CE (1984) Mechanical response of an aramid textile yarn to ballistic impact

  117. Shim VPW, Tan VBC, Tay TE (1995) Modelling deformation and damage characteristics of woven fabric under small projectile impact. Int J Impact Eng 16:585–605. https://doi.org/10.1016/0734-743X(94)00063-3

    Article  Google Scholar 

  118. Wilde AF, Roylance DK, Rogers JPM (1973) Photographic investigation of high-speed missile impact upon nylon fabric: part I: energy absorption and cone radial velocity in fabric. Text Res J 43:753–761. https://doi.org/10.1177/004051757304301212

    Article  Google Scholar 

  119. Cheeseman BA, Bogetti TA (2003) Ballistic impact into fabric and compliant composite laminates. Compos Struct. https://doi.org/10.1016/S0263-8223(03)00029-1

    Article  Google Scholar 

  120. Mawkhlieng U, Majumdar A, Laha A (2019) A review of fibrous materials for soft body armour applications. RSC Adv 10:1066–1086. https://doi.org/10.1039/c9ra06447h

    Article  ADS  CAS  Google Scholar 

  121. on PC-P of the 18th international symposium (1999) Dimensionless parameters for optimization of textile-based body armor systems. ResearchgateNet 1999

  122. Roylance D, Wilde A, Tocci G (1973) Ballistic impact of textile structures. Text Res J 43:34–41. https://doi.org/10.1177/004051757304300105

    Article  Google Scholar 

  123. Roylance D, Wang SS (1981) Influence of fibre properties on ballistic penetration of textile panels. Fibre Sci Technol 14:183–190. https://doi.org/10.1016/0015-0568(81)90010-5

    Article  Google Scholar 

  124. Laible RC (1982) Ballistic materials and penetration mechanics. Am J Forensic Med Pathol 3:190. https://doi.org/10.1097/00000433-198206000-00020

    Article  Google Scholar 

  125. Kamiya R, Cheeseman BA, Popper P, Chou TW (2000) Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Compos Sci Technol 60:33–47. https://doi.org/10.1016/S0266-3538(99)00093-7

    Article  Google Scholar 

  126. Bogetti TA, Gillespie JW, Lamontia MA (1992) Influence of ply waviness on the stiffness and strength reduction on composite laminates. J Thermoplast Compos Mater 5:344–369. https://doi.org/10.1177/089270579200500405

    Article  ADS  CAS  Google Scholar 

  127. Tong L, Tan P, Steven GP (2002) Effect of yarn waviness on strength of 3D orthogonal woven CFRP composite materials. J Reinf Plast Compos 21:153–173. https://doi.org/10.1177/073168440202100201

    Article  CAS  Google Scholar 

  128. Stig F, Hallström S (2013) Influence of crimp on 3D-woven fibre reinforced composites. Compos Struct 95:114–122. https://doi.org/10.1016/J.COMPSTRUCT.2012.07.022

    Article  Google Scholar 

  129. Stig F, Hallström S (2009) Assessment of the mechanical properties of a new 3D woven fibre composite material. Compos Sci Technol 69:1686–1692. https://doi.org/10.1016/J.COMPSCITECH.2008.04.047

    Article  CAS  Google Scholar 

  130. Stig F, Hallström S (2012) Spatial modelling of 3D-woven textiles. Compos Struct 94:1495–1502. https://doi.org/10.1016/J.COMPSTRUCT.2011.12.003

    Article  Google Scholar 

  131. Stig F (2012) 3D-woven reinforcement in composites

  132. Gu H, Zhili Z (2002) Tensile behavior of 3D woven composites by using different fabric structures. Mater Des 23:671–674. https://doi.org/10.1016/s0261-3069(02)00053-5

    Article  Google Scholar 

  133. Dash AK, Behera BK (2018) Role of weave design on the mechanical properties of 3D woven fabrics as reinforcements for structural composites. J Text Inst 109:952–960. https://doi.org/10.1080/00405000.2017.1393787

    Article  CAS  Google Scholar 

  134. Sun Q, Field JE (2005) High-speed photographic study of impact on fibers and woven fabrics. spiedigitallibrary.org, p 20. https://doi.org/10.1117/12.23993.

  135. Sun D, Chen X, Wang Y, Zhou Y (2012) 2D/3D woven fabrics for ballistic protection. In: 4th World conference in 3D fabrics and their applications. RWTH Aachen, Manchester, pp 1–12

  136. Chocron S, Anderson CE, Samant KR, Figueroa E, Nicholls AE, Walker JD (2010) Measurement of strain in fabrics under ballistic impact using embedded nichrome wires, part II: results and analysis. Int J Impact Eng 37:69–81. https://doi.org/10.1016/j.ijimpeng.2009.05.012

    Article  Google Scholar 

  137. Karahan M, Kuş A, Eren R (2008) An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int J Impact Eng 35:499–510. https://doi.org/10.1016/j.ijimpeng.2007.04.003

    Article  Google Scholar 

  138. Zhou Y, Chen X, Wells G (2014) Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre. Compos Part B Eng 62:198–204. https://doi.org/10.1016/j.compositesb.2014.02.022

    Article  CAS  Google Scholar 

  139. Karahan M, Europe NK-F& T in E (2014) Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites. YaddaIcmEduPl 2014(22):109–115

    Google Scholar 

  140. David-West OS, Nash DH, Banks WM (2008) An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact. Compos Struct 83:247–258. https://doi.org/10.1016/j.compstruct.2007.04.015

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appear to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

SC: Conceptualization, Methodology, Data curation, Formal Analysis, Visualization, Investigation, Validation, Simulated Data Analysis, Writing- Original draft preparation, Reviewing, and Editing. Second Author, BKB: Supervision and project administration.

Corresponding author

Correspondence to Soumya Chowdhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Behera, B.K. Low-velocity impact response of 3D woven solid structures for multi-scale applications: role of yarn maneuverability and weave architecture. J Braz. Soc. Mech. Sci. Eng. 46, 138 (2024). https://doi.org/10.1007/s40430-024-04734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04734-z

Keywords

Navigation