Skip to main content

Advertisement

Log in

Effect of different laser texture configurations on improving surface wettability and wear characteristics of Ti6Al4V implant material

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the effect of different laser-textured Ti6Al4V alloy surface topologies on improving wettability and tribology characteristics is reported. Three texture patterns, namely dimple, moat and hybrid configurations, using an Nd-YAG laser source with varying scanning speed were prepared on the implant material surface. Surface properties, such as micro-hardness, wettability, friction, wear and elemental analysis, were studied. The morphology and features of the textured surfaces were investigated using a scanning electron microscope. The surface oxidation was evidenced through EDS analysis showing the presence of oxygen (22.9%) and carbon (11.7%) on the laser-textured surface. The wettability analysis has shown the formation of hydrophilicity on the textured surfaces. The moat pattern surface has the highest textured density of 58% and the least contact angle of 51.5°. The wear test results show an improved tribological property for textured surfaces than the non-textured surface. This study shows that the moat type-textured configuration is more effective for creating functional surfaces of Ti6Al4V bio-implant material followed by hybrid and dimple configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allen Q, Raeymaekers B (2021) Surface texturing of prosthetic hip implant bearing surfaces: a review. J Tribol 143(4). https://doi.org/10.1115/1.4048409

  2. Kheradmandfard M, Penkov OV, Kashani-Bozorg SF, Lee JS, Kim C-L, Khadem M et al (2022) Exceptional improvement in the wear resistance of biomedical β-type titanium alloy with the use of a biocompatible multilayer Si/DLC nanocomposite coating. Ceram Int [Internet] 48(12):17376–17384. https://doi.org/10.1016/j.ceramint.2022.03.002

    Article  Google Scholar 

  3. Mayer AS, Erb S, Kim RH, Dennis DA, Shirname-More L, Pratte KA, Barker EA, Maier LA, Pacheco KA (2021) Sensitization to implant components is associated with joint replacement failure: identification and revision to nonallergenic hardware improves outcomes. J Allergy Clin Immunol Pract 9(8):3109–3117. https://doi.org/10.1016/j.jaip.2020.12.068

  4. Grover T, Pandey A, Kumari ST, Awasthi A, Singh B, Dixit P et al (2019) Role of titanium in bio implants and additive manufacturing: an overview. Mater Today Proc [Internet] 26:3071–3080. https://doi.org/10.1016/j.matpr.2020.02.636

    Article  Google Scholar 

  5. Sananta P, Zahrah VT, Widasmara D, Fuzianingsih EN (2022) Association between diabetes mellitus, hypertension, and knee osteoarthritis in secondary referral hospitals in Indonesia with retrospective cross-sectional study. Ann Med Surg [Internet] 80:104155. https://www.sciencedirect.com/science/article/pii/S2049080122009153

  6. Lim YZ, Wong J, Hussain SM, Estee MM, Zolio L, Page MJ, et al (2022) Recommendations for weight management in osteoarthritis: a systematic review of clinical practice guidelines. Osteoarthr Cartil Open [Internet] 4(4):100298. https://doi.org/10.1016/j.ocarto.2022.100298

  7. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater [Internet] 8(11):3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  Google Scholar 

  8. Kaur M, Singh K (2019) Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C [Internet] 102(December 2018):844–862. https://doi.org/10.1016/j.msec.2019.04.064

    Article  Google Scholar 

  9. Aliyu AA, Abdul-Rani AM, Ginta TL, Prakash C, Axinte E, Razak MA et al (2017) A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of biomedical implants. Adv Mater Sci Eng. https://doi.org/10.1155/2017/8723239

    Article  Google Scholar 

  10. Hoque E, Showva N, Ahmed M, Bin A, Elius S, El-bialy T et al. (2022) Heliyon Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects. Heliyon [Internet] 8(October):e11300. https://doi.org/10.1016/j.heliyon.2022.e11300

  11. Matsko A, França R (2022) Design, manufacturing and clinical outcomes for additively manufactured titanium dental implants: a systematic review. Dent Rev [Internet] 2(1):100041. https://doi.org/10.1016/j.dentre.2022.100041

  12. Shah FA, Trobos M, Thomsen P, Palmquist A (2016) Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants – is one truly better than the other? Mater Sci Eng C [Internet] 62:960–966. https://doi.org/10.1016/j.msec.2016.01.032

    Article  Google Scholar 

  13. Lackington WA, Fleyshman L, Schweizer P, Elbs-glatz Y, Guimond S, Rottmar M (2022) Materials today bio the response of soft tissue cells to Ti implants is modulated by blood-implant interactions. Mater Today Bio [Internet] 15(March):100303. https://doi.org/10.1016/j.mtbio.2022.100303

  14. Stewart C, Akhavan B, Wise SG, Bilek MMM (2019) Progress in materials science a review of biomimetic surface functionalization for bone- integrating orthopedic implants: mechanisms, current approaches , and future directions. Prog Mater Sci [Internet] 106(February 2018):100588. https://doi.org/10.1016/j.pmatsci.2019.100588

  15. Kaur S, Ghadirinejad K, Oskouei RH (2019) An overview on the tribological performance of titanium alloys with surface modifications for biomedical applications. Lubricants 7(8). https://doi.org/10.3390/lubricants7080065

  16. Bose S, Robertson SF, Bandyopadhyay A (2018) Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater [Internet] 66:6–22. https://doi.org/10.1016/j.actbio.2017.11.003

    Article  Google Scholar 

  17. Alagatu A, Dhapade D, Gajbhiye M, Panjrekar R, Raut A (2022) Review of different material and surface modification techniques for dental implants. Mater Today Proc [Internet] 60:2245–2249. https://doi.org/10.1016/j.matpr.2022.03.338

    Article  Google Scholar 

  18. Nouri A, Rohani Shirvan A, Li Y, Wen C (2023) Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater Manuf [Internet] 1(April 2022):100001. https://doi.org/10.1016/j.smmf.2022.100001

  19. Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C (2021) The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med 10(8). https://doi.org/10.3390/jcm1008164

  20. Mozetič M (2019) Surface modification to improve properties of materials. Materials 12(3):441. https://doi.org/10.3390/ma12030441

    Article  Google Scholar 

  21. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Potential of silicon powder-mixed electro spark alloying for surface modification of β-phase titanium alloy for orthopedic applications. Mater Today Proc 4(9):10080–10083. https://doi.org/10.1016/j.matpr.2017.06.324

    Article  Google Scholar 

  22. Thanigaivel S, Priya AK, Balakrishnan D, Dutta K, Rajendran S, Soto-Moscoso M (2022) Insight on recent development in metallic biomaterials: strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem Eng J [Internet] 187(April):108522. https://doi.org/10.1016/j.bej.2022.108522

  23. Mahajan A, Devgan S, Sidhu SS (2021) Surface alteration of biomedical alloys by electrical discharge treatment for enhancing the electrochemical corrosion, tribological and biological performances. Surf Coatings Technol [Internet]. 405(October 2020):126583. https://doi.org/10.1016/j.surfcoat.2020.126583

  24. Agarwal R, García AJ (2018) Surface modification of biomaterials. Princ Regen Med, pp 651–60. https://doi.org/10.1016/B978-0-12-809880-6.00037-0

  25. Pratap T, Patra K (2018) Fabrication of micro-textured surfaces using ball-end micromilling for wettability enhancement of Ti-6Al-4V. J Mater Process Tech [Internet] 262(February):168–181. https://doi.org/10.1016/j.jmatprotec.2018.06.035

    Article  Google Scholar 

  26. Jain A, Kumari N, Jagadevan S, Bajpai V (2020) Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling. Surfaces Interfaces [Internet] 21(July):100714. https://doi.org/10.1016/j.surfin.2020.100714

  27. Shivakoti I, Kibria G, Das S, Sharma A, Pradhan BB, Chatterjee S (2021) Laser surface texturing on Ti-6Al-4V. Mater Manuf Processes 36(7):858–867. https://doi.org/10.1080/10426914.2020.1866197

    Article  Google Scholar 

  28. Mukherjee S, Dhara S, Saha P (2018) Laser surface remelting of Ti and its alloys for improving surface biocompatibility of orthopaedic implants. Mater Technol [Internet] 33(2):106–118. https://doi.org/10.1080/10667857.2017.1390931

    Article  Google Scholar 

  29. Vishnoi M, Kumar P, Murtaza Q (2021) Surface texturing techniques to enhance tribological performance: a review. Surfaces Interfaces 27(September). https://doi.org/10.1016/j.surfin.2021.101463

  30. Jwad T, Deng S, Butt H, Dimov S (2016) Laser induced single spot oxidation of titanium. Appl Surf Sci [Internet] 387:617–624. https://doi.org/10.1016/j.apsusc.2016.06.136

    Article  Google Scholar 

  31. Prasad KN, Syed I, Subbu SK (2022) Laser dimple texturing–applications, process, challenges, and recent developments: a review. Aust J Mech Eng [Internet] 20(2):316–331. https://doi.org/10.1080/14484846.2019.1705533

    Article  Google Scholar 

  32. Li H, Wang X, Zhang J, Wang B, Breisch M, Hartmaier A et al (2022) Experimental investigation of laser surface texturing and related biocompatibility of pure titanium. Int J Adv Manuf Technol [Internet] 119(9–10):5993–6005. https://doi.org/10.1007/s00170-022-08710-6

    Article  Google Scholar 

  33. Mukherjee S, Dhara S, Saha P (2021) Enhanced corrosion, tribocorrosion resistance and controllable osteogenic potential of stem cells on micro-rippled Ti6Al4V surfaces produced by pulsed laser remelting. J Manuf Process [Internet] 65(March):119–133. https://doi.org/10.1016/j.jmapro.2021.03.023

    Article  Google Scholar 

  34. Ji M, Xu J, Chen M, El Mansori M (2020) Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing. Ceram Int [Internet] 46(6):7161–7169. https://doi.org/10.1016/j.ceramint.2019.11.210

    Article  Google Scholar 

  35. Xu J, Zhang X, Dai J, Yu D, Ji M, Chen M (2023) Biomimetic microtextured surfaces to improve tribological and antibacterial behaviors of 3Y-TZP ceramics. J Mater Res Technol [Internet] 23:1360–1374. https://doi.org/10.1016/j.jmrt.2023.01.039

    Article  Google Scholar 

  36. Luo X, Yao S, Zhang H, Cai M, Liu W, Pan R et al (2020) Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation. Opt Laser Technol [Internet] 124(December 2019):105973. https://doi.org/10.1016/j.optlastec.2019.105973

  37. Miao S, Cao X, Lu M, Liu X (2022) Tailoring micro/nano-materials with special wettability for biomedical devices. Biomed Technol [Internet] 2023(2):15–30. https://doi.org/10.1016/j.bmt.2022.11.005

    Article  Google Scholar 

  38. Parau AC, Juravlea GA, Raczkowska J, Vitelaru C, Dinu M, Awsiuk K, et al (2023) Comparison of 316L and Ti6Al4V biomaterial coated by ZrCu-based thin films metallic glasses: structure, morphology, wettability, protein adsorption, corrosion resistance, biomineralization. Appl Surf Sci 612(November 2022). https://doi.org/10.1016/j.apsusc.2022.155800

  39. Ładniak A, Jurak M, Wiącek AE (2021) Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility. Colloids Surfaces A Physicochem Eng Asp 630(September). https://doi.org/10.1016/j.colsurfa.2021.127546

  40. Zhang S, Chi M, Mo J, Liu T, Liu Y, Fu Q et al (2022) Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat Commun 13(1):1–10. https://doi.org/10.1038/s41467-022-31987-w

    Article  Google Scholar 

  41. Fadzil AF bin A, Pramanik A, Basak AK, Prakash C, Shankar S (2022) Role of surface quality on biocompatibility of implants—a review. Ann 3D Print Med [Internet]. 8:100082. https://doi.org/10.1016/j.stlm.2022.100082

  42. Sadeghi M, Kharaziha M, Salimijazi HR, Tabesh E (2019) Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf Coatings Technol [Internet] 362(September 2018):282–292. https://doi.org/10.1016/j.surfcoat.2019.01.113

    Article  Google Scholar 

  43. Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem [Internet] 53(9):1466–1467. https://doi.org/10.1021/j150474a015

    Article  Google Scholar 

  44. Eghbali N, Naffakh-Moosavy H, Sadeghi Mohammadi S, Naderi-Manesh H (2021) The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser. Dent Mater [Internet] 37(3):547–558. https://doi.org/10.1016/j.dental.2020.12.007

    Article  Google Scholar 

  45. Jain A, Bajpai V (2019) Mechanical micro-texturing and characterization on Ti6Al4V for the improvement of surface properties. Surf Coatings Technol [Internet] 380(July):125087. https://doi.org/10.1016/j.surfcoat.2019.125087

  46. Xu J, Ji M, Li L, Wu Y, Yu Q, Chen M (2022) Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing. Ceram Int 48(3):3702–3710. https://doi.org/10.1016/j.ceramint.2021.10.152

    Article  Google Scholar 

  47. Batal A, Sammons R, Dimov S (2019) Response of Saos-2 osteoblast-like cells to laser surface texturing, sandblasting and hydroxyapatite coating on CoCrMo alloy surfaces. Mater Sci Eng C 98(May 2018):1005–1013. https://doi.org/10.1016/j.msec.2019.01.067

    Article  Google Scholar 

  48. Pratap T, Patra K (2017) Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances. Surf Coatings Technol 2018(349):71–81. https://doi.org/10.1016/j.surfcoat.2018.05.056

    Article  Google Scholar 

  49. Xi X, Pan Y, Wang P, Fu X (2019) Effect of laser processing parameters on surface texture of Ti6Al4V alloy. IOP Conf Series Mater Sci Eng 563(2):4–10. https://doi.org/10.1088/1757-899X/563/2/022052

    Article  Google Scholar 

  50. Martínez JMV, Gómez JS, Ponce MB, Pedemonte FJB (2018) Effects of laser processing parameters on texturized layer development and surface features of Ti6Al4V alloy samples. Coatings 8(1):1–9. https://doi.org/10.3390/coatings8010006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanujam Radhakrishnan.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velayuthaperumal, S., Radhakrishnan, R. Effect of different laser texture configurations on improving surface wettability and wear characteristics of Ti6Al4V implant material. J Braz. Soc. Mech. Sci. Eng. 45, 363 (2023). https://doi.org/10.1007/s40430-023-04287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04287-7

Keywords

Navigation