Skip to main content
Log in

Droplet breakup and coalescence characteristics of hollow cone spray in crossflow

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A numerical investigation is done to study the influence of droplet collisions on the characteristics of hollow cone sprays when subjected to a crossflowing stream of air. The process of hollow cone spray in crossflow is simulated using Eulerian–Lagrangian point parcel spray solver in OpenFOAM platform. Droplet atomization is modelled using LISA–TAB atomization model, and the droplet collisions are accounted using the standard O’Rourke collision algorithm. The numerical simulations are performed to study the effect of crossflow velocity on the hollow cone spray by varying the liquid to gas momentum flux ratio in the range 17,435–213,587. Qualitative and quantitative comparison is made between the spray with collision model and without collision model. The spray characteristics such as Sauter mean diameter (SMD), maximum droplet diameter and length of penetration are reported in the current study. A significant difference in the SMD is observed between the spray with and without collision model. For all the crossflow velocity cases studied, the droplet dispersion is observed to be higher for spray with droplet collisions accounted compared to the spray without accounting collision interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\({C}_{\mathrm{d}}\) :

Drag coefficient

\(d\) :

Diameter of nozzle (mm)

\({F}_{\mathrm{D}}\) :

Drag force

\({F}_{\mathrm{g}}\) :

Gravity force

\(\kappa\) :

Turbulence kinetic energy

\(Q\) :

Liquid to air momentum flux ratio

\({\mathrm{Re}}_{\mathrm{p}}\) :

Particle Reynolds number

\(u\) :

Continuous phase velocity

\(t\) :

Time

\({V}_{\mathrm{p}}\) :

Droplet velocity (m/s)

\(\mathrm{We}\) :

Weber number

ε :

Energy dissipation rate

\(\rho\) :

Density (kg/m3)

\(\sigma\) :

Surface tension (N/m)

μ eff :

Effective viscosity (kg/ms)

\(\mathrm{a}\) :

Air

l:

Liquid

p:

Particle

CVP:

Counter rotating vortex pair

LISA:

Linearized instability sheet atomization

SMD:

Sauter mean diameter (µm)

TAB:

Taylor analogy breakup

References

  1. Tambe S, Jeng S-M, Mongia H, Hsiao G (2005) Liquid jets in subsonic crossflow. In: 43rd AIAA aerospace sciences meeting and exhibit, p 731

  2. Ghenai C, Sapmaz H, Lin C-X (2009) Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow. Exp Fluids 46:121–129

    Article  Google Scholar 

  3. Prakash RS, Sinha A, Tomar G, Ravikrishna RV (2018) Liquid jet in crossflow–effect of liquid entry conditions. Exp Therm Fluid Sci 93:45–56

    Article  Google Scholar 

  4. Song Y, Hwang D, Ahn K (2017) Effect of orifice geometry on spray characteristics of liquid jet in cross flow. In: 55th AIAA aerospace sciences meeting, p 1961

  5. Herrmann M (2010) Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow. J Eng Gas Turbines Power 132:061506

    Article  Google Scholar 

  6. Bravo LG, Kim D, Ham F, Kerner KA (2018) High fidelity simulations of primary breakup and vaporization of liquid jet in cross flow (JICF). In: 2018 Joint propulsion conference, p 4683

  7. Wen J, Hu Y, Nakanishi A, Kurose R (2020) Atomization and evaporation process of liquid fuel jets in crossflows: a numerical study using Eulerian/Lagrangian method. Int J Multiph Flow 129:103331

    Article  MathSciNet  Google Scholar 

  8. Nouri JM, Whitelaw JH (2007) Gasoline sprays in uniform cross flow. At Sprays 17:621–640

    Google Scholar 

  9. Johansson P, Sjunnesson A, Olovsson S (1994) Development of an experimental LPP gas turbine combustor. In: International gas turbine and aeroengine congress and exposition

  10. Ashgriz N (2011) Instability of liquid sheets. In: Ashgriz N (ed) Handbook of atomization and sprays. Springer, Berlin, pp 75–96

    Chapter  Google Scholar 

  11. Saha A, Lee JD, Basu S, Kumar R (2012) Breakup and coalescence characteristics of a hollow cone swirling spray. Phys Fluids 24:124103

    Article  Google Scholar 

  12. Migliaccio M, Montanaro A, Beatrice C et al (2017) Experimental and numerical analysis of a high-pressure outwardly opening hollow cone spray injector for automotive engines. Fuel 196:508–519

    Article  Google Scholar 

  13. Sun Y, Alkhedhair AM, Guan Z, Hooman K (2018) Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers. Energy 160:678–692

    Article  Google Scholar 

  14. Ding JW, Li GX, Yu YS, Li HM (2016) Numerical investigation on primary atomization mechanism of hollow cone swirling sprays. Int J Rotating Mach 2016:1–11

    Article  Google Scholar 

  15. Hassani MA, Elkaie A, Shafaee M (2019) Numerical investigation of the full-cone spray structure and characteristics provided by a jet-swirl atomizer. Proc Inst Mech Eng Part G J Aerosp Eng 233:5788–5800

    Article  Google Scholar 

  16. Gao J, Jiang D, Huang Z, Wang X (2005) Experimental and numerical study of high-pressure-swirl injector sprays in a direct injection gasoline engine. Proc Inst Mech Eng Part A J Power Energy 219:617–629

    Article  Google Scholar 

  17. Shim YS, Choi GM, Kim DJ (2008) Numerical and experimental study on hollow-cone fuel spray of highpressure swirl injector under high ambient pressure condition. J Mech Sci Technol 22:320–329

    Article  Google Scholar 

  18. Bafekr SH, Shams M, Ebrahimi R, Shadaram A (2011) Numerical simulation of pressure-swirl spray dispersion by using Eulerian–Lagrangian method. J Dispers Sci Technol 32:47–55

    Article  Google Scholar 

  19. Lain S, Sommerfeld M (2020) Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution. Int J Multiph Flow 132:103392. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103392

    Article  MathSciNet  Google Scholar 

  20. Schmidt DP, Senecal PK (2002) Improving the numerical accuracy of spray simulations. SAE Tech Pap 111:1826–1835. https://doi.org/10.4271/2002-01-1113

    Article  Google Scholar 

  21. Luret G, Menard T, Berlemont A et al (2010) Modeling collision outcomes in moderately dense sprays. At Sprays 20:251–268

    Article  Google Scholar 

  22. Bazdidi-Tehrani F, Abedinejad MS, Mohammadi M (2019) Analysis of relationship between entropy generation and soot formation in turbulent kerosene air/jet diffusion flames. Energy Fuels 33:9184–9195

    Article  Google Scholar 

  23. Bazdidi-Tehrani F, Abedinejad MS (2018) Influence of incoming air conditions on fuel spray evaporation in an evaporating chamber. Chem Eng Sci 189:233–244. https://doi.org/10.1016/j.ces.2018.05.046

    Article  Google Scholar 

  24. Ghosh S, Hunt JCR (1998) Spray jets in a cross-flow. J Fluid Mech 365:109–136

    Article  MathSciNet  MATH  Google Scholar 

  25. Deshpande SS, Gao J, Trujillo MF (2011) Characteristics of hollow cone sprays in cross flow. At Sprays 21:349–361

    Article  Google Scholar 

  26. Bai B, Sun H, Zhang H, Liu L (2011) Numerical study on turbulent mixing of spray droplets in cross flow. J Propuls Power 27:132–143

    Article  Google Scholar 

  27. Zhang H, Bai B, Liu L et al (2013) Mixing of hollow-cone spray with a confined crossflow in rectangular duct. AIAA J 51:615–622

    Article  Google Scholar 

  28. Zhang H, Bai B, Liu L et al (2013) Droplet dispersion characteristics of the hollow cone sprays in crossflow. Exp Therm Fluid Sci 45:25–33

    Article  Google Scholar 

  29. Zhang H, Bai B (2016) Temperature patterns of air crossflow with hollow-cone spray evaporation. AIAA J 54:3244–3254

    Article  Google Scholar 

  30. Zhang H, Bai B, Wang Y (2018) Quantitative description of droplet dispersion of hollow cone spray in gaseous crossflow. Exp Therm Fluid Sci 93:398–408

    Article  Google Scholar 

  31. Prakash RS, Gadgil H, Raghunandan BN (2014) Breakup processes of pressure swirl spray in gaseous cross-flow. Int J Multiph Flow 66:79–91

    Article  Google Scholar 

  32. Lee S, Kim W, Yoon W (2010) Spray formation by a swirl spray jet in low speed cross-flow. J Mech Sci Technol 24:559–568. https://doi.org/10.1007/s12206-009-1222-6

    Article  Google Scholar 

  33. Salewski M, Fuchs L (2007) Consistency issues of Lagrangian particle tracking applied to a spray jet in crossflow. Int J Multiph Flow 33:394–410

    Article  Google Scholar 

  34. Rüger M, Hohmann S, Sommerfeld M, Kohnen G (2000) Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. At Sprays 10:47–81

    Google Scholar 

  35. Pan Y, Suga K, Nikolopoulos N et al (2016) High fidelity simulations of binary collisions of liquid drops. Phys Fluids 17:4160–4174. https://doi.org/10.1063/1.2009527

    Article  Google Scholar 

  36. Chowdhary S, Reddy SR, Banerjee R (2020) Detailed numerical simulations of unequal sized off-centre binary droplet collisions. Int J Multiph Flow 128:103267

    Article  MathSciNet  Google Scholar 

  37. Qian J, Law CK (1997) Regimes of coalescence and separation in droplet collision. J Fluid Mech 331:59–80

    Article  Google Scholar 

  38. O’Rourke PJ (1981) Collective drop effects in vaporizing liquid sprays. Princeton University, Princeton

    Google Scholar 

  39. Ko GH, Ryou HS (2005) Modeling of droplet collision-induced breakup process. Int J Multiph Flow 31:723–738

    Article  MATH  Google Scholar 

  40. Munnannur A, Reitz RD (2007) A new predictive model for fragmenting and non-fragmenting binary droplet collisions. Int J Multiph Flow 33:873–896

    Article  Google Scholar 

  41. Schmidt DP, Rutland CJ (2000) A new droplet collision algorithm. J Comput Phys 80:62–80. https://doi.org/10.1006/jcph.2000.6568

    Article  MATH  Google Scholar 

  42. Gavaises M, Theodorakakos A, Bergeies G, Brenn G (1996) Evaluation of the effect of droplet collisions on spray mixing. Proc Inst Mech Eng Part C J Mech Eng Sci 210:465–475

    Article  Google Scholar 

  43. Santolaya JL, García JA, Calvo E, Cerecedo LM (2013) Effects of droplet collision phenomena on the development of pressure swirl sprays. Int J Multiph Flow 56:160–171

    Article  Google Scholar 

  44. Launder BE, Spalding DB (1983) The numerical computation of turbulent flows. In: Patankar SV, Pollard A, Singhal AK, Pratap Vanka S (eds) Numerical prediction of flow, heat transfer, turbulence and combustion. Elsevier, Amsterdam, pp 96–116

    Chapter  Google Scholar 

  45. OpenFOAM (2016) Programmer’s guide

  46. Crowe C, Schwarzkopf JD, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles, 2nd edn. Taylor and Francis, Milton Park

    Google Scholar 

  47. Dombrowski N, Johns WR (1963) The aerodynamic instability and disintegration of viscous liquid sheets. Chem Eng Sci 18:203–214

    Article  Google Scholar 

  48. O’Rourke PJ, Amsden A (1987) The TAB method for numerical calculation of spray droplet breakup. SAE Tech Pap. https://doi.org/10.4271/872089

    Article  Google Scholar 

  49. Lee MW, Park JJ, Farid MM, Yoon SS (2012) Comparison and correction of the drop breakup models for stochastic dilute spray flow. Appl Math Model 36:4512–4520. https://doi.org/10.1016/j.apm.2012.02.015

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajesh Reddy.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, C.C., Chowdhary, S., Nimmagadda, R. et al. Droplet breakup and coalescence characteristics of hollow cone spray in crossflow. J Braz. Soc. Mech. Sci. Eng. 45, 169 (2023). https://doi.org/10.1007/s40430-023-04082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04082-4

Keywords

Navigation