Skip to main content
Log in

Effect of reaming on surface properties of self-lubricating composites

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper has the main objective to analyze the influence of the reaming process on surface properties (topography, affected layer and tribological performance) of self-lubricating composites. Tests were performed with constant cutting parameters—cutting speed (vc = 20 m/min), feed (f = 0.3 mm/rev.) and depth of cut (ap = 0.25 mm). The materials are composites with solid lubricants (6.5%vol of graphite and 1%vol of h-BN—hexagonal Boron Nitride) mixed in a Fe–4Ni–0.5Si alloy manufactured by pressing and sintering. The surfaces analysis showed that the reaming process significantly modified the surfaces, reducing the percentage of pores + solid lubricants by approximately 15% compared with the sintered surfaces. The reaming process had a great influence on the anisotropy of the surface, as well as in the roughness parameters Sz (maximum height), Sbi (bearing surface index), Sk (core height), Ssk (kurtosis) and Ssk (skewness). The friction coefficient of the reamed surface stayed below the lubricity limit (μ < 0.2). The reamed surfaces presented a friction coefficient of around 62.5% and wear rate approximately 560% higher than the sintered surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234. https://doi.org/10.1016/j.triboint.2011.11.022

    Article  Google Scholar 

  2. Holmberg K, Erdemir A (2019) The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135:389–396. https://doi.org/10.1016/j.triboint.2019.03.024

    Article  Google Scholar 

  3. Holmberg K, Erdemir A (2017) Influence of tribology on global energy consumption, costs and emissions. Friction 5:263–284. https://doi.org/10.1007/s40544-017-0183-5

    Article  Google Scholar 

  4. Kato H, Takama M, Iwai Y, Washida K, Sasaki Y (2003) Wear and mechanical properties of sintered Cooper–TIN composites containing graphite or molybdenum disulfide. Wear 255:573–578. https://doi.org/10.1016/S0043-1648(03)00072-3

    Article  Google Scholar 

  5. Erdemir A (2001) Solid lubricants and self-lubricating solids. In: Bhushan B (ed) Modern tribology handbook, vol 2. CRC Press, Boca Raton, pp 787–818

    Google Scholar 

  6. Clauss FJ (1972) Solid lubricants and self-lubricating solids, 1st edn. Academic Press, New York

    Google Scholar 

  7. Dangsheng X (2001) Lubrication behavior of Ni–Cr-based alloys containing MoS2 at high temperature. Wear 251:1094–1099. https://doi.org/10.1016/S0043-1648(01)00803-1

    Article  Google Scholar 

  8. Erdemir A (2005) Review of engineered tribological interfaces for improved boundary lubrication. Tribol Int 38:249–256. https://doi.org/10.1016/j.triboint.2004.08.008

    Article  Google Scholar 

  9. Qin W, Fu L, Zhu J, Yang W, Li D, Zhou L (2018) Tribological properties of self-lubricating Ta-Cu films. Appl Surf Sci 435:1105–1113. https://doi.org/10.1016/j.apsusc.2017.11.220

    Article  Google Scholar 

  10. Hammes G, Schroeder R, Binder C, Klein AN, De Mello JDB (2014) Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites. Tribol Int 70:119–127. https://doi.org/10.1016/j.triboint.2013.09.016

    Article  Google Scholar 

  11. Hammes G, Mucelin KJ, Gonçalves PC, Binder C, Binder R, Janssen R, Klein AN, De Mello JDB (2017) Effect of hexagonal boron nitride and graphite on mechanical and scuffing resistance of self lubricating iron based composite. Wear 376–377:1084–1090

    Article  Google Scholar 

  12. Binder C, Bendo T, Pereira RV, Hammes G, De Mello JDB, Klein NA (2016) Influence of the SiC content and sintering temperature on the microstructural, mechanical and tribological properties of sintered self-lubricating composites. Powder Metall 59:384–393. https://doi.org/10.1080/00325899.2016.1250036

    Article  Google Scholar 

  13. Binder C, Bendo T, Hammes G, Neves GO, Binder R, De Mello JDB, Klein AN (2017) Structure and properties of in situ-generated two-dimensional turbostratic graphite nodules. Carbon 124:685–692. https://doi.org/10.1016/j.carbon.2017.09.036

    Article  Google Scholar 

  14. Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth-Heinemann, Woburn

    Google Scholar 

  15. Davies DP, Jenkins SL, Legg SJ (2014) The Effect machining processes can have on the fatigue life and surface integrity of critical helicopter components. Proc CIRP 13:25–30. https://doi.org/10.1016/j.procir.2014.04.005

    Article  Google Scholar 

  16. Smith GT, Allsop MJ (1991) Some aspects in the surface integrity associated with turning of powder metallurgy compacts. Wear 150:289–302. https://doi.org/10.1016/0043-1648(91)90324-N

    Article  Google Scholar 

  17. Leveille T, Valiorgue F, Claudin C, Rech J, Van-Robaeys A, Masciantonio U, Brosse A, Dorlin T (2022) Influence of the reaming process on hole’s surface integrity and geometry in a martensitic stainless steel 15–5PH. Proc CIRP 108:384–389. https://doi.org/10.1016/j.procir.2022.03.062

    Article  Google Scholar 

  18. Budinski KG (1988) Surface engineering for wear resistance, 1st edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  19. Keller J, Fridrici V, Kapsa P, Huard JF (2009) Surface topography and tribology of cast iron in boundary lubrication. Tribol Int 42:1011–1018. https://doi.org/10.1016/j.triboint.2009.02.008

    Article  Google Scholar 

  20. De Mello JDB, Juste KC, Kapsa P, Binder C, Klein AN (2018) Influence of surface finishing on the tribological behaviour of self-lubricating iron bases composite. Tribol T 61:560–568. https://doi.org/10.1080/10402004.2017.1378393

    Article  Google Scholar 

  21. Ebersbach FG, Hammes G, De Mello JDB, Schroeter RB, Binder C, Klein AN (2021) Tribological behavior of surfaces obtained by turning in sintered self-lubricating composites. Tribol T 64:143–156. https://doi.org/10.1080/10402004.2020.1812782

    Article  Google Scholar 

  22. Metal Powder Industries Federation (2012) Standard test methods for metal powders and powder metallurgy products, 37–42

  23. International Organization for Standardization (ISO 16610-71), 2014. Geometrical product specifications (GPS)—filtration—Part 71: robust areal filters—gaussian regression filters

  24. Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers, 2nd edn. Wiley, Roboken

    MATH  Google Scholar 

  25. Moravčíková J (2015) Cutting material influence on the quality of the machined surface. Proc Eng 100:328–333. https://doi.org/10.1016/j.proeng.2015.01.375

    Article  Google Scholar 

  26. Nieslony P, Kiszka P (2012) An investigation of surface texture after turning PM armco iron. Proc CIRP 1:671–672. https://doi.org/10.1016/j.procir.2012.05.021

    Article  Google Scholar 

  27. Schoop J, Jawahir IS, Balk TJ (2016) Size effects in finish machining of porous powdered metal for engineered surface quality. Precis Eng 44:180–191. https://doi.org/10.1016/j.precisioneng.2015.12.004

    Article  Google Scholar 

  28. Klocke F (2018) Fertigungsverfahren 1, 9th edn. Springer, Berlin

    Book  Google Scholar 

  29. Ebersbach FG (2018) Efeitos do processo de torneamento nas propriedades de superfície em compósitos autolubrificantes sinterizados. Doctoral dissertation, Federal University of Santa Catarina. https://doi.org/10.13140/RG.2.2.23498.39369

  30. Whitehouse DJ (2010) Handbook of surface and nanometrology, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  31. Whitehouse DJ (2004) Surfaces and their measurement, 1st edn. Kogan Page Science, London

    Google Scholar 

  32. Blunt L, Jiang X (2003) Advanced techniques for assessment surface topography: development of a basis for 3d surface texture standards “Surfstand,” 1st edn. Kogan Page Science, London

    Google Scholar 

  33. Sedlacek M, Podgornik B, Vizintin J (2012) Correlation between standard roughness parameters skewness and kurtosis and tribological behavior of contact surfaces. Tribol Int 48:102–112. https://doi.org/10.1016/j.triboint.2011.11.008

    Article  Google Scholar 

  34. Ghosh A, Sadeghi F (2015) A novel approach to model effects of surface roughness parameters on wear. Wear 338–339:73–94. https://doi.org/10.1016/j.wear.2015.04.022

    Article  Google Scholar 

  35. Bendo T, Hermann ML, Salvaro DB, Binder C, Hammes G, De Mello JDB, Klein AN (2020) Surface Mo-Enrichment and plasma carburizing on sintered iron: microstructure and tribological properties. J Mater Eng Perform 29:3723–3735. https://doi.org/10.1007/s11665-020-04870-2

    Article  Google Scholar 

  36. Rao KSS, Allamraju KV (2017) Effect on microhardness and residual stress in CNC turning of aluminium 7075 alloy. Mater Today-Proc 4:975–981. https://doi.org/10.1016/j.matpr.2017.01.109

    Article  Google Scholar 

  37. Çelik M, Gürün H, Çaydas U (2022) Surface modification of wire-EDMed Ti6Al4V alloy by ultrasonic assisted magnetic abrasive finishing technique. Surf Topogr Metrol Prop 10:025011. https://doi.org/10.1088/2051-672X/ac68fe

    Article  Google Scholar 

  38. Davim JP (2010) Surface integrity in machining. Springer-Verlag, London

    Book  Google Scholar 

  39. Šalak A, Vasiko K, Selecka M, Danninger H (2006) New short time face turning method for testing the machinability of PM steels. J Mater Process Tech 176:62–69. https://doi.org/10.1016/j.jmatprotec.2006.02.014

    Article  Google Scholar 

  40. Ebersbach FG, Carvalho DL, Schroeter RB, Binder C, Klein AN (2019) Effect of turning parameters on the surface of sintered self-lubricating composites. Int J Adv Manuf Tech 101:3143–3156. https://doi.org/10.1007/s00170-018-3168-2

    Article  Google Scholar 

  41. König W, Klocke F (1997) Fertigungsverfahren 1. drehen, fräsen, bohren, Fifith. Springer, Berlin

    Google Scholar 

  42. Robertson J (2002) Diamond-like amorphous carbon. Mater Sc Eng R Rep 37:129–281. https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  43. Nance J, Subhash G, Sankar B, Haftka R, Kim NH, Deck C, Oswald S (2021) Measurement of residual stress in silicon carbide fibers of tubular composites using raman spectroscopy. Acta Mater 15:117–164. https://doi.org/10.1016/j.actamat.2021.117164

    Article  Google Scholar 

  44. Souibgui M, Ajlani H, Cavanna A, Oueslati M, Meftah A, Madouri A (2017) Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride. Superlattice Microst 112:394–403. https://doi.org/10.1016/j.spmi.2017.09.047

    Article  Google Scholar 

  45. Ortiz-Morales M, Soto-Bernal JJ, Frausto-Reyes C, Acosta-Ortiz SE, Gonzalez-Mota R, Rosales-Candelas I (2015) Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel. Spectrochim Acta A 145:505–510. https://doi.org/10.1016/j.saa.2015.03.015

    Article  Google Scholar 

  46. Blau PJ (2005) On the nature of running-in. Tribol Int 38:1007–1012. https://doi.org/10.1016/j.triboint.2005.07.020

    Article  Google Scholar 

  47. Blau PJ (2008) Friction science and technology: from concepts to applications, 2nd edn. Boca Raton, CRC Press

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPQ, CAPES, and Embraco for funding this research. The authors would also like to thank the LCM of the Federal University of Santa Catarina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Gustavo Ebersbach.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Izabel Fernanda Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebersbach, F.G., Mônego, G., Cornelsen, M.H. et al. Effect of reaming on surface properties of self-lubricating composites. J Braz. Soc. Mech. Sci. Eng. 45, 138 (2023). https://doi.org/10.1007/s40430-023-04068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04068-2

Keywords

Navigation