Skip to main content
Log in

Formability study of micro-plasma arc-welded AISI 316L stainless steel thin sheet joint

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present work investigates the formability of thin austenitic AISI 316L stainless steel micro-plasma arc-welded blanks. In this context, a small-scale stretch forming setup is designed and fabricated with a 30-mm punch diameter. Three different types of welded blanks are prepared by using different welding process parameters settings, namely, welding current, welding speed, stand-off distance and nozzle diameter. The welded joint microstructure of various zones is evaluated using metallographic procedure. X-ray diffraction and transmission electron microscopy are used to determine the phases present in the base material and fusion zone. Tensile, microhardness and stretch forming tests are carried out to determine the mechanical properties of the welded joints. The forming limit diagram and strain distribution are calculated experimentally from the stretch forming tests. The fusion zone is found with skeletal and columnar δ-ferrite. Few secondary phases are observed at the transition zone through TEM analysis. The presence of the weld zones reduces the formability as compared with the base material. However, good joint formability is achieved by using micro-plasma arc welding. Maximum limiting dome height is achieved by using lubrication between punch and blanks. A uniform strain distribution is found on both sides of the pole in biaxial and uniaxial strain path specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Basak S, Katiyar BS, Orozco-Gonzalez P et al (2019) Microstructure, forming limit diagram, and strain distribution of pre-strained DP-IF steel tailor-welded blank for auto body application. Int J Adv Manuf Technol 104:1749–1767. https://doi.org/10.1007/s00170-019-03938-1

    Article  Google Scholar 

  2. Prasad S, Pal S, Robi PS (2020) Analysis of weld characteristics of micro plasma arc welded thin stainless steel 306 L sheet. J Manuf Process 57:957–977. https://doi.org/10.1016/j.jmapro.2020.07.062

    Article  Google Scholar 

  3. Kumar B, Bag S, Paul CP et al (2020) Influence of the mode of laser welding parameters on microstructural morphology in thin sheet Ti6Al4V alloy. Opt Laser Technol 131:106456. https://doi.org/10.1016/j.optlastec.2020.106456

    Article  Google Scholar 

  4. Lin Prakash PS, Biswal SK, Roy GG et al (2018) Effect of orientation of weld line on formability of electron beam-welded dissimilar thickness titanium sheets. J Mater Eng Perform 27:5913–5925. https://doi.org/10.1007/s11665-018-3689-8

    Article  Google Scholar 

  5. Sánchez-Tovar R, Montañés MT, García-Antón J (2013) Effects of microplasma arc AISI 316L welds on the corrosion behaviour of pipelines in LiBr cooling systems. Corros Sci 73:365–374. https://doi.org/10.1016/j.corsci.2013.04.025

    Article  Google Scholar 

  6. Soares AG, Martins RF, Mateus AR, da Silva PP (2019) Design enhancements to a gas turbine’s exhaust system used for naval propulsion. Eng Fail Anal 102:20–34. https://doi.org/10.1016/j.engfailanal.2019.04.020

    Article  Google Scholar 

  7. Mohammad Soltani H, Tayebi M (2018) Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding. J Alloys Compd 767:112–121. https://doi.org/10.1016/j.jallcom.2018.06.302

    Article  Google Scholar 

  8. Reza Tabrizi T, Sabzi M, Mousavi Anijdan SH et al (2021) Comparing the effect of continuous and pulsed current in the GTAW process of AISI 316L stainless steel welded joint: microstructural evolution, phase equilibrium, mechanical properties and fracture mode. J Mater Res Technol 15:199–212. https://doi.org/10.1016/j.jmrt.2021.07.154

    Article  Google Scholar 

  9. Landowski M, Świerczyńska A, Rogalski G, Fydrych D (2020) Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels. Materials 13:1–16. https://doi.org/10.3390/ma13132930

    Article  Google Scholar 

  10. Saha D, Pal S (2021) Study on the microstructural variation and fatigue performance of microplasma arc welded thin 316L sheet. Proc Inst Mech Eng Part L J Mater Des Appl. https://doi.org/10.1177/14644207211062067

    Article  Google Scholar 

  11. Kannan AR, Sankarapandian S, Pramod R, Shanmugam NS (2021) Experimental and numerical studies on the influence of formability of AISI 316L tailor-welded blanks at different weld line orientations. J Brazilian Soc Mech Sci Eng 43:1–26. https://doi.org/10.1007/s40430-021-02896-8

    Article  Google Scholar 

  12. Torabi A, Kolahan F (2018) Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm. Opt Laser Technol 103:300–310. https://doi.org/10.1016/j.optlastec.2017.12.042

    Article  Google Scholar 

  13. Baruah M, Bag S (2017) Characteristic difference of thermo-mechanical behavior in plasma microwelding of steels. Weld World 61:857–871. https://doi.org/10.1007/s40194-017-0472-7

    Article  Google Scholar 

  14. Tseng KH, Hsieh ST, Tseng CC (2003) Effect of process parameters of micro-plasma arc welding on morphology and quality in stainless steel edge joint welds. Sci Technol Weld Join 8:423–430. https://doi.org/10.1179/136217103225009107

    Article  Google Scholar 

  15. Wang FX, He JP, Fang J et al (2012) Study of titanium foil welding using micro-plasma arc welding. Adv Mater Res 538–541:1469–1472. https://doi.org/10.4028/www.scientific.net/AMR.538-541.1469

    Article  Google Scholar 

  16. Dhinakaran V, Shanmugam NS, Sankaranarayanasamy K (2017) Experimental investigation and numerical simulation of weld bead geometry and temperature distribution during plasma arc welding of thin Ti-6Al-4V sheets. J Strain Anal Eng Des 52:30–44. https://doi.org/10.1177/0309324716669612

    Article  Google Scholar 

  17. Dwibedi S, Jain NK, Pathak S (2018) Investigations on joining of stainless steel tailored blanks by µ-PTA process. Mater Manuf Process 33:1851–1863. https://doi.org/10.1080/10426914.2018.1476766

    Article  Google Scholar 

  18. Sabzi M, Dezfuli SM (2018) Drastic improvement in mechanical properties and weldability of 316L stainless steel weld joints by using electromagnetic vibration during GTAW process. J Manuf Process 33:74–85. https://doi.org/10.1016/j.jmapro.2018.05.002

    Article  Google Scholar 

  19. Subramanian C, Roy H, Kumar A et al (2021) Failure cause analysis of an expansion bellow of integrated turbine unit. Int J Press Vessel Pip 191:104360. https://doi.org/10.1016/j.ijpvp.2021.104360

    Article  Google Scholar 

  20. Keeler SP (1961) Plastic instability and fracture in sheets. ASM Trans 56:25–48

    Google Scholar 

  21. Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE Tech Pap 77:380–387. https://doi.org/10.4271/680093

    Article  Google Scholar 

  22. Marciniak Z, Kuczyński K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9:609–620. https://doi.org/10.1016/0020-7403(67)90066-5

    Article  MATH  Google Scholar 

  23. Ghosh AK, Hecker SS (1975) Failure in thin sheets stretched over rigid punches. Metall Trans A 6(5):1065–1074

    Article  Google Scholar 

  24. Graf A, Hosford W (1994) The influence of strain-path changes on forming limit diagrams of A1 6111 T4. J Mech Sci 36:897–910

    Article  Google Scholar 

  25. Moayedi H, Darabi R, Ghabussi A et al (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669. https://doi.org/10.1016/j.tws.2020.106669

    Article  Google Scholar 

  26. Habibi M, Hashemi R, Fallah Tafti M, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323. https://doi.org/10.1016/j.jmapro.2017.11.009

    Article  Google Scholar 

  27. Panda SK, Kumar DR, Kumar H, Nath AK (2007) Characterization of tensile properties of tailor welded IF steel sheets and their formability in stretch forming. J Mater Process Technol 183:321–332. https://doi.org/10.1016/j.jmatprotec.2006.10.035

    Article  Google Scholar 

  28. Kim MJ, Jin CK, Kang CG (2014) Comparison of formabilities of stainless steel 316L bipolar plates using static and dynamic load stamping. Int J Adv Manuf Technol 75:651–657. https://doi.org/10.1007/s00170-014-5986-1

    Article  Google Scholar 

  29. Panda SK, Kumar DR (2008) Improvement in formability of tailor welded blanks by application of counter pressure in biaxial stretch forming. J Mater Process Technol 204:70–79. https://doi.org/10.1016/j.jmatprotec.2007.10.076

    Article  Google Scholar 

  30. Sreenivasan N, Xia M, Lawson S, Zhou Y (2008) Effect of laser welding on formability of DP980 steel. J Eng Mater Technol Trans ASME 130:0410041–0410049. https://doi.org/10.1115/1.2969246

    Article  Google Scholar 

  31. Xu Z, Peng L, Yi P, Lai X (2019) An investigation on the formability of sheet metals in the micro/meso scale hydroforming process. Int J Mech Sci 150:265–276. https://doi.org/10.1016/j.ijmecsci.2018.10.033

    Article  Google Scholar 

  32. Han S, Woo Y, Hwang T et al (2019) Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int J Mach Tools Manuf 138:51–65. https://doi.org/10.1016/j.ijmachtools.2018.11.005

    Article  Google Scholar 

  33. Sun Z, Zhuang H (2019) Experimental study on forming limit diagram obtained by bulging uniformly in thickness direction. Int J Adv Manuf Technol 104:967–977. https://doi.org/10.1007/s00170-019-03887-9

    Article  Google Scholar 

  34. Kumar A, Gautam V, Kumar DR (2017) Maximum bulge height and weld line displacement in hydroforming of tailor welded blanks. J Manuf Sci Eng 140:031005. https://doi.org/10.1115/1.4038513

    Article  Google Scholar 

  35. Saha D, Pal S (2019) Microstructure and work hardening behavior of micro-plasma arc welded AISI 316L sheet joint. J Mater Eng Perform 28:2588–2599. https://doi.org/10.1007/s11665-019-04064-5

    Article  Google Scholar 

  36. Sahu AK, Bag S (2020) Probe pulse conditions and solidification parameters for the dissimilar welding of Inconel 718 and AISI 316L stainless steel. Metall Mater Trans A Phys Metall Mater Sci 51:2192–2208. https://doi.org/10.1007/s11661-020-05705-4

    Article  Google Scholar 

  37. ASTM E8 (2010) Standard test methods for tension testing of metallic materials. ASTM; p 1–27. https://doi.org/10.1520/E0008

  38. ASTM 517 (2010) Standard test method for plastic strain ratio r for sheet metal. ASTM; p 1–8. https://doi.org/10.1520/E0517-19

  39. Park M, Hirata Y (2017) Research on generation of micro-plasma arc and its power intensity. Weld Int 31:284–290. https://doi.org/10.1080/09507116.2016.1223214

    Article  Google Scholar 

  40. Lampman S (1997) Weld integrity and performance. ASM International

  41. Dadfar MR, Fathi MH, Karimzadeh F et al (2007) Effect of TIG welding on corrosion behavior of 316L stainless steel. Mater Lett 61:2343–2346. https://doi.org/10.1016/j.matlet.2006.09.008

    Article  Google Scholar 

  42. Sriba A, Vogt JB, Amara SE (2018) Microstructure, micro-hardness and impact toughness of welded austenitic stainless steel 316L. Trans Indian Inst Met 71:2303–2314. https://doi.org/10.1007/s12666-018-1362-4

    Article  Google Scholar 

  43. Sabzi M, Mousavi Anijdan SH, Eivani AR et al (2021) The effect of pulse current changes in PCGTAW on microstructural evolution, drastic improvement in mechanical properties, and fracture mode of dissimilar welded joint of AISI 316L-AISI 310S stainless steels. Mater Sci Eng A 823:141700. https://doi.org/10.1016/j.msea.2021.141700

    Article  Google Scholar 

  44. Mataya MC, Nilsson ER, Brown EL, Krauss G (2003) Hot working and recrystallization of as-cast 317L. Metall Mater Trans A Phys Metall Mater Sci 34:3021–3041. https://doi.org/10.1007/s11661-003-0201-2

    Article  Google Scholar 

  45. Sourmail T (2001) Precipitation in creep resistant austenitic stainless steels. Mater Sci Technol 17:1–14. https://doi.org/10.1179/026708301101508972

    Article  Google Scholar 

  46. Guo LQ, Lin MC, Qiao LJ, Volinsky AA (2013) Ferrite and austenite phase identification in duplex stainless steel using SPM techniques. Appl Surf Sci 287:499–501. https://doi.org/10.1016/j.apsusc.2013.09.041

    Article  Google Scholar 

  47. Feng Y, Luo Z, Liu Z et al (2015) Keyhole gas tungsten arc welding of AISI 316L stainless steel. Mater Des 85:24–31. https://doi.org/10.1016/j.matdes.2015.07.011

    Article  Google Scholar 

  48. Sabzi M, Mousavi Anijdan SH, Chalandar ARB et al (2022) An experimental investigation on the effect of gas tungsten arc welding current modes upon the microstructure, mechanical, and fractography properties of welded joints of two grades of AISI 316L and AISI310S alloy metal sheets. Mater Sci Eng A 840:142877. https://doi.org/10.1016/j.msea.2022.142877

    Article  Google Scholar 

  49. Sakthivel T, Vasudevan M, Laha K et al (2011) Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes. Mater Sci Eng A 528:6971–6980. https://doi.org/10.1016/j.msea.2011.05.052

    Article  Google Scholar 

  50. Sabzi M, Dezfuli SM (2018) Post weld heat treatment of hypereutectoid hadfield steel: characterization and control of microstructure, phase equilibrium, mechanical properties and fracture mode of welding joint. J Manuf Process 34:313–328. https://doi.org/10.1016/j.jmapro.2018.06.009

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Department of Mechanical Engineering and Central Instruments Facility, IIT Guwahati, by providing experimental and testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhomay Pal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, V., Biswal, S.K. & Pal, S. Formability study of micro-plasma arc-welded AISI 316L stainless steel thin sheet joint. J Braz. Soc. Mech. Sci. Eng. 44, 564 (2022). https://doi.org/10.1007/s40430-022-03871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03871-7

Keywords

Navigation